These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1838517)

  • 21. Detection of flow direction in high-flying insect and songbird migrants.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T; Reynolds AM
    Curr Biol; 2015 Aug; 25(17):R751-2. PubMed ID: 26325133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frigate birds track atmospheric conditions over months-long transoceanic flights.
    Weimerskirch H; Bishop C; Jeanniard-du-Dot T; Prudor A; Sachs G
    Science; 2016 Jul; 353(6294):74-8. PubMed ID: 27365448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extreme altitude changes between night and day during marathon flights of great snipes.
    Lindström Å; Alerstam T; Andersson A; Bäckman J; Bahlenberg P; Bom R; Ekblom R; Klaassen RHG; Korniluk M; Sjöberg S; Weber JKM
    Curr Biol; 2021 Aug; 31(15):3433-3439.e3. PubMed ID: 34197730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wind selectivity and partial compensation for wind drift among nocturnally migrating passerines.
    McLaren JD; Shamoun-Baranes J; Bouten W
    Behav Ecol; 2012 Sep; 23(5):1089-1101. PubMed ID: 22936843
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimal use of wind by migrating birds: combined drift and overcompensation.
    Alerstam T
    J Theor Biol; 1979 Aug; 79(3):341-53. PubMed ID: 522498
    [No Abstract]   [Full Text] [Related]  

  • 26. Geographical and temporal flexibility in the response to crosswinds by migrating raptors.
    Klaassen RH; Hake M; Strandberg R; Alerstam T
    Proc Biol Sci; 2011 May; 278(1710):1339-46. PubMed ID: 20980299
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Body condition and wind support initiate the shift of migratory direction and timing of nocturnal departure in a songbird.
    Schmaljohann H; Naef-Daenzer B
    J Anim Ecol; 2011 Nov; 80(6):1115-22. PubMed ID: 21615404
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Factors influencing phototaxis in nocturnal migrating birds.
    Zhao X; Chen M; Wu Z; Wang Z
    Zoolog Sci; 2014 Dec; 31(12):781-8. PubMed ID: 25483789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive strategies of high-flying migratory hoverflies in response to wind currents.
    Gao B; Wotton KR; Hawkes WLS; Menz MHM; Reynolds DR; Zhai BP; Hu G; Chapman JW
    Proc Biol Sci; 2020 Jun; 287(1928):20200406. PubMed ID: 32486972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Far eastern curlew and whimbrel prefer flying low - wind support and good visibility appear only secondary factors in determining migratory flight altitude.
    Galtbalt B; Lilleyman A; Coleman JT; Cheng C; Ma Z; Rogers DI; Woodworth BK; Fuller RA; Garnett ST; Klaassen M
    Mov Ecol; 2021 Jun; 9(1):32. PubMed ID: 34120657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adaptive strategies in nocturnally migrating insects and songbirds: contrasting responses to wind.
    Chapman JW; Nilsson C; Lim KS; Bäckman J; Reynolds DR; Alerstam T
    J Anim Ecol; 2016 Jan; 85(1):115-24. PubMed ID: 26147535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wind-Related Orientation Patterns in Diurnal, Crepuscular and Nocturnal High-Altitude Insect Migrants.
    Hu G; Lim KS; Reynolds DR; Reynolds AM; Chapman JW
    Front Behav Neurosci; 2016; 10():32. PubMed ID: 26973481
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Migrating birds avoid flying through fog and low clouds.
    Panuccio M; Dell'Omo G; Bogliani G; Catoni C; Sapir N
    Int J Biometeorol; 2019 Feb; 63(2):231-239. PubMed ID: 30687905
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A characterization of autumn nocturnal migration detected by weather surveillance radars in the northeastern USA.
    Farnsworth A; Van DOREN BM; Hochachka WM; Sheldon D; Winner K; Irvine J; Geevarghese J; Kelling S
    Ecol Appl; 2016 Apr; 26(3):752-70. PubMed ID: 27411248
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single wind-mediated mechanism explains high-altitude 'non-goal oriented' headings and layering of nocturnally migrating insects.
    Reynolds AM; Reynolds DR; Smith AD; Chapman JW
    Proc Biol Sci; 2010 Mar; 277(1682):765-72. PubMed ID: 19889697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Asymmetry hidden in birds' tracks reveals wind, heading, and orientation ability over the ocean.
    Goto Y; Yoda K; Sato K
    Sci Adv; 2017 Sep; 3(9):e1700097. PubMed ID: 28959724
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pelagic seabirds reduce risk by flying into the eye of the storm.
    Lempidakis E; Shepard ELC; Ross AN; Matsumoto S; Koyama S; Takeuchi I; Yoda K
    Proc Natl Acad Sci U S A; 2022 Oct; 119(41):e2212925119. PubMed ID: 36194636
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Orientation in birds. Spatiotemporal programmes and genetics of orientation.
    Berthold P
    EXS; 1991; 60():86-105. PubMed ID: 1838524
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Global aerial flyways allow efficient travelling.
    Kranstauber B; Weinzierl R; Wikelski M; Safi K
    Ecol Lett; 2015 Dec; 18(12):1338-45. PubMed ID: 26477348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased flight altitudes among migrating golden eagles suggest turbine avoidance at a Rocky Mountain wind installation.
    Johnston NN; Bradley JE; Otter KA
    PLoS One; 2014; 9(3):e93030. PubMed ID: 24671199
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.