These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 18385334)

  • 1. Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex.
    Zhou Z; Bernard MR; Bonds AB
    J Neurosci; 2008 Apr; 28(14):3759-68. PubMed ID: 18385334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial phase and the temporal structure of the response to gratings in V1.
    Victor JD; Purpura KP
    J Neurophysiol; 1998 Aug; 80(2):554-71. PubMed ID: 9705450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The representation of complex images in spatial frequency domains of primary visual cortex.
    Zhang JX; Rosenberg A; Mallik AK; Husson TR; Issa NP
    J Neurosci; 2007 Aug; 27(35):9310-8. PubMed ID: 17728445
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direction selectivity of synaptic potentials in simple cells of the cat visual cortex.
    Jagadeesh B; Wheat HS; Kontsevich LL; Tyler CW; Ferster D
    J Neurophysiol; 1997 Nov; 78(5):2772-89. PubMed ID: 9356425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strobe rearing reduces direction selectivity in area 17 by altering spatiotemporal receptive-field structure.
    Humphrey AL; Saul AB
    J Neurophysiol; 1998 Dec; 80(6):2991-3004. PubMed ID: 9862901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retino-cortical stimulus frequency-dependent gamma coupling: evidence and functional implications of oscillatory potentials.
    Todorov MI; Kékesi KA; Borhegyi Z; Galambos R; Juhász G; Hudetz AG
    Physiol Rep; 2016 Oct; 4(19):. PubMed ID: 27702884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experience-dependent maturation of the spatial and temporal characteristics of the cell receptive fields in the kitten visual cortex.
    Gary-Bobo E; Przybyslawski J; Saillour P
    Neurosci Lett; 1995 Apr; 189(3):147-50. PubMed ID: 7624032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Population encoding of spatial frequency, orientation, and color in macaque V1.
    Victor JD; Purpura K; Katz E; Mao B
    J Neurophysiol; 1994 Nov; 72(5):2151-66. PubMed ID: 7884450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial patterns of spontaneous local field activity in the monkey visual cortex.
    Leopold DA; Logothetis NK
    Rev Neurosci; 2003; 14(1-2):195-205. PubMed ID: 12929926
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oscillatory discharge in the visual system: does it have a functional role?
    Ghose GM; Freeman RD
    J Neurophysiol; 1992 Nov; 68(5):1558-74. PubMed ID: 1479430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical response field dynamics in cat visual cortex.
    Sharon D; Jancke D; Chavane F; Na'aman S; Grinvald A
    Cereb Cortex; 2007 Dec; 17(12):2866-77. PubMed ID: 17395608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization dynamics in response to plaid stimuli in monkey V1.
    Lima B; Singer W; Chen NH; Neuenschwander S
    Cereb Cortex; 2010 Jul; 20(7):1556-73. PubMed ID: 19812238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronous activity in cat visual cortex encodes collinear and cocircular contours.
    Samonds JM; Zhou Z; Bernard MR; Bonds AB
    J Neurophysiol; 2006 Apr; 95(4):2602-16. PubMed ID: 16354730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal frequency tuning and contrast sensitivity of single neurons in area 21a of the cat.
    Tardif E; Bergeron A; Lepore F; Guillemot JP
    Brain Res; 1996 Apr; 716(1-2):219-23. PubMed ID: 8738243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differences in spatial and temporal frequency interactions between central and peripheral parts of the feline area 18.
    Zhao C; Hata R; Okamura JY; Wang G
    Eur J Neurosci; 2016 Oct; 44(8):2635-2645. PubMed ID: 27529598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modulation of the synchronization between cells in visual cortex by contextual targets.
    Bretzner F; Aïtoubah J; Shumikhina S; Tan YF; Molotchnikoff S
    Eur J Neurosci; 2001 Nov; 14(9):1539-54. PubMed ID: 11722616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex.
    Samonds JM; Bonds AB
    J Neurophysiol; 2005 Jan; 93(1):223-36. PubMed ID: 15282261
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats.
    Siegel M; König P
    J Neurosci; 2003 May; 23(10):4251-60. PubMed ID: 12764113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of spatial and temporal selectivity in the suprasylvian visual cortex of the cat.
    Zumbroich T; Price DJ; Blakemore C
    J Neurosci; 1988 Aug; 8(8):2713-28. PubMed ID: 3411350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.