These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Expressing Constitutively Active Rheb in Adult Neurons after a Complete Spinal Cord Injury Enhances Axonal Regeneration beyond a Chondroitinase-Treated Glial Scar. Wu D; Klaw MC; Connors T; Kholodilov N; Burke RE; Tom VJ J Neurosci; 2015 Aug; 35(31):11068-80. PubMed ID: 26245968 [TBL] [Abstract][Full Text] [Related]
4. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats. Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652 [TBL] [Abstract][Full Text] [Related]
5. Neuroactive Peptide Nanofibers for Regeneration of Spinal Cord after Injury. Sever-Bahcekapili M; Yilmaz C; Demirel A; Kilinc MC; Dogan I; Caglar YS; Guler MO; Tekinay AB Macromol Biosci; 2021 Jan; 21(1):e2000234. PubMed ID: 33043585 [TBL] [Abstract][Full Text] [Related]
6. Histone H1 improves regeneration after mouse spinal cord injury and changes shape and gene expression of cultured astrocytes. Kleene R; Loers G; Jakovcevski I; Mishra B; Schachner M Restor Neurol Neurosci; 2019; 37(4):291-313. PubMed ID: 31227672 [TBL] [Abstract][Full Text] [Related]
7. Biofunctionalized peptide-based hydrogel as an injectable scaffold for BDNF delivery can improve regeneration after spinal cord injury. Hassannejad Z; Zadegan SA; Vaccaro AR; Rahimi-Movaghar V; Sabzevari O Injury; 2019 Feb; 50(2):278-285. PubMed ID: 30595411 [TBL] [Abstract][Full Text] [Related]
8. Antibodies against the NG2 proteoglycan promote the regeneration of sensory axons within the dorsal columns of the spinal cord. Tan AM; Colletti M; Rorai AT; Skene JH; Levine JM J Neurosci; 2006 May; 26(18):4729-39. PubMed ID: 16672645 [TBL] [Abstract][Full Text] [Related]
9. Tegaserod, a small compound mimetic of polysialic acid, promotes functional recovery after spinal cord injury in mice. Pan HC; Shen YQ; Loers G; Jakovcevski I; Schachner M Neuroscience; 2014 Sep; 277():356-66. PubMed ID: 25014876 [TBL] [Abstract][Full Text] [Related]
10. Axonal regeneration through the fibrous scar in lesioned goldfish spinal cord. Takeda A; Atobe Y; Kadota T; Goris RC; Funakoshi K Neuroscience; 2015 Jan; 284():134-152. PubMed ID: 25290012 [TBL] [Abstract][Full Text] [Related]
11. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats. Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959 [TBL] [Abstract][Full Text] [Related]
12. Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury. White RE; Rao M; Gensel JC; McTigue DM; Kaspar BK; Jakeman LB J Neurosci; 2011 Oct; 31(42):15173-87. PubMed ID: 22016551 [TBL] [Abstract][Full Text] [Related]
14. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Silva GA; Czeisler C; Niece KL; Beniash E; Harrington DA; Kessler JA; Stupp SI Science; 2004 Feb; 303(5662):1352-5. PubMed ID: 14739465 [TBL] [Abstract][Full Text] [Related]
15. Required growth facilitators propel axon regeneration across complete spinal cord injury. Anderson MA; O'Shea TM; Burda JE; Ao Y; Barlatey SL; Bernstein AM; Kim JH; James ND; Rogers A; Kato B; Wollenberg AL; Kawaguchi R; Coppola G; Wang C; Deming TJ; He Z; Courtine G; Sofroniew MV Nature; 2018 Sep; 561(7723):396-400. PubMed ID: 30158698 [TBL] [Abstract][Full Text] [Related]
16. Growth-modulating molecules are associated with invading Schwann cells and not astrocytes in human traumatic spinal cord injury. Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA Brain; 2007 Apr; 130(Pt 4):940-53. PubMed ID: 17314203 [TBL] [Abstract][Full Text] [Related]
17. A self-assembling peptide reduces glial scarring, attenuates post-traumatic inflammation and promotes neurological recovery following spinal cord injury. Liu Y; Ye H; Satkunendrarajah K; Yao GS; Bayon Y; Fehlings MG Acta Biomater; 2013 Sep; 9(9):8075-88. PubMed ID: 23770224 [TBL] [Abstract][Full Text] [Related]
18. The multifaceted effects of agmatine on functional recovery after spinal cord injury through Modulations of BMP-2/4/7 expressions in neurons and glial cells. Park YM; Lee WT; Bokara KK; Seo SK; Park SH; Kim JH; Yenari MA; Park KA; Lee JE PLoS One; 2013; 8(1):e53911. PubMed ID: 23349763 [TBL] [Abstract][Full Text] [Related]
19. Proliferating NG2-Cell-Dependent Angiogenesis and Scar Formation Alter Axon Growth and Functional Recovery After Spinal Cord Injury in Mice. Hesp ZC; Yoseph RY; Suzuki R; Jukkola P; Wilson C; Nishiyama A; McTigue DM J Neurosci; 2018 Feb; 38(6):1366-1382. PubMed ID: 29279310 [TBL] [Abstract][Full Text] [Related]
20. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. Wang N; Xiao Z; Zhao Y; Wang B; Li X; Li J; Dai J J Tissue Eng Regen Med; 2018 Feb; 12(2):e1154-e1163. PubMed ID: 28482124 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]