These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18385365)

  • 1. Combining mosquito vector and human disease data for improved assessment of spatial West Nile virus disease risk.
    Winters AM; Bolling BG; Beaty BJ; Blair CD; Eisen RJ; Meyer AM; Pape WJ; Moore CG; Eisen L
    Am J Trop Med Hyg; 2008 Apr; 78(4):654-65. PubMed ID: 18385365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Seasonal patterns for entomological measures of risk for exposure to Culex vectors and West Nile virus in relation to human disease cases in northeastern Colorado.
    Bolling BG; Barker CM; Moore CG; Pape WJ; Eisen L
    J Med Entomol; 2009 Nov; 46(6):1519-31. PubMed ID: 19960707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado.
    Barker CM; Bolling BG; Black WC; Moore CG; Eisen L
    J Vector Ecol; 2009 Dec; 34(2):276-93. PubMed ID: 20836831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal and Spatial Variability of Entomological Risk Indices for West Nile Virus Infection in Northern Colorado: 2006-2013.
    Fauver JR; Pecher L; Schurich JA; Bolling BG; Calhoon M; Grubaugh ND; Burkhalter KL; Eisen L; Andre BG; Nasci RS; LeBailly A; Ebel GD; Moore CG
    J Med Entomol; 2016 Mar; 53(2):425-34. PubMed ID: 26718715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Irrigated agriculture is an important risk factor for West Nile virus disease in the hyperendemic Larimer-Boulder-Weld area of north central Colorado.
    Eisen L; Barker CM; Moore CG; Pape WJ; Winters AM; Cheronis N
    J Med Entomol; 2010 Sep; 47(5):939-51. PubMed ID: 20939393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling Culex tarsalis abundance on the northern Colorado front range using a landscape-level approach.
    Schurich JA; Kumar S; Eisen L; Moore CG
    J Am Mosq Control Assoc; 2014 Mar; 30(1):7-20. PubMed ID: 24772672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High subclinical West Nile virus incidence among nonvaccinated horses in northern California associated with low vector abundance and infection.
    Nielsen CF; Reisen WK; Armijos MV; Maclachlan NJ; Scott TW
    Am J Trop Med Hyg; 2008 Jan; 78(1):45-52. PubMed ID: 18187784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. National and regional associations between human West Nile virus incidence and demographic, landscape, and land use conditions in the coterminous United States.
    DeGroote JP; Sugumaran R
    Vector Borne Zoonotic Dis; 2012 Aug; 12(8):657-65. PubMed ID: 22607071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive spatial models for risk of West Nile virus exposure in eastern and western Colorado.
    Winters AM; Eisen RJ; Lozano-Fuentes S; Moore CG; Pape WJ; Eisen L
    Am J Trop Med Hyg; 2008 Oct; 79(4):581-90. PubMed ID: 18840749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution and abundance of host-seeking Culex species at three proximate locations with different levels of West Nile virus activity.
    Rochlin I; Ginsberg HS; Campbell SR
    Am J Trop Med Hyg; 2009 Apr; 80(4):661-8. PubMed ID: 19346396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Entomological studies along the Colorado Front Range during a period of intense West Nile virus activity.
    Bolling BG; Moore CG; Anderson SL; Blair CD; Beaty BJ
    J Am Mosq Control Assoc; 2007 Mar; 23(1):37-46. PubMed ID: 17536366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metro Atlanta responds to West Nile virus: a coordinated public health response.
    Willis J
    Ethn Dis; 2005; 15(2 Suppl 2):S49-51. PubMed ID: 15822839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Irrigation linked to a greater incidence of human and veterinary West Nile virus cases in the United States from 2004 to 2006.
    Gates MC; Boston RC
    Prev Vet Med; 2009 May; 89(1-2):134-7. PubMed ID: 19185941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The continuing spread of West Nile virus in the western hemisphere.
    Gubler DJ
    Clin Infect Dis; 2007 Oct; 45(8):1039-46. PubMed ID: 17879923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.
    Hamer GL; Kitron UD; Goldberg TL; Brawn JD; Loss SR; Ruiz MO; Hayes DB; Walker ED
    Am J Trop Med Hyg; 2009 Feb; 80(2):268-78. PubMed ID: 19190226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zoonosis update: West Nile virus.
    Trevejo RT; Eidson M
    J Am Vet Med Assoc; 2008 May; 232(9):1302-9. PubMed ID: 18447774
    [No Abstract]   [Full Text] [Related]  

  • 17. Endemic human mosquito-borne disease in Wisconsin residents, 2002-2006.
    Sotir MJ; Glaser LC; Fox PE; Doering M; Geske DA; Warshauer DM; Davis JP
    WMJ; 2007 Jul; 106(4):185-90. PubMed ID: 17844707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. West Nile virus: strategies for predicting municipal-level infection.
    Yiannakoulias NW; Svenson LW
    Ann N Y Acad Sci; 2007 Apr; 1102():135-48. PubMed ID: 17470917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using a neural network for mining interpretable relationships of West Nile risk factors.
    Ghosh D; Guha R
    Soc Sci Med; 2011 Feb; 72(3):418-29. PubMed ID: 20950908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [West Nile virus: a reality in Mexico].
    Téllez I; Calderón O; Franco-Paredes C; del Río C
    Gac Med Mex; 2006; 142(6):493-9. PubMed ID: 17201112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.