These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. GABAergic control of micturition within the periaqueductal grey matter of the male rat. Stone E; Coote JH; Allard J; Lovick TA J Physiol; 2011 Apr; 589(Pt 8):2065-78. PubMed ID: 21486804 [TBL] [Abstract][Full Text] [Related]
23. Ventrolateral Periaqueductal Gray Neurons Are Active During Urination. Rao Y; Gao Z; Li X; Li X; Li J; Liang S; Li D; Zhai J; Yan J; Yao J; Chen X Front Cell Neurosci; 2022; 16():865186. PubMed ID: 35813503 [TBL] [Abstract][Full Text] [Related]
24. Distinct cell groups in the lumbosacral cord of the cat project to different areas in the periaqueductal gray. Vanderhorst VG; Mouton LJ; Blok BF; Holstege G J Comp Neurol; 1996 Dec; 376(3):361-85. PubMed ID: 8956105 [TBL] [Abstract][Full Text] [Related]
25. Endogenous opioids acting at a medullary mu-opioid receptor contribute to the behavioral antinociception produced by GABA antagonism in the midbrain periaqueductal gray. Roychowdhury SM; Fields HL Neuroscience; 1996 Oct; 74(3):863-72. PubMed ID: 8884782 [TBL] [Abstract][Full Text] [Related]
26. GABA(A) and 5-HT(3) receptors are involved in dorsal root reflexes: possible role in periaqueductal gray descending inhibition. Peng YB; Wu J; Willis WD; Kenshalo DR J Neurophysiol; 2001 Jul; 86(1):49-58. PubMed ID: 11431487 [TBL] [Abstract][Full Text] [Related]
27. Roles of the pontine pneumotaxic and micturition centers in respiratory inhibition during bladder contractions. Gdovin MJ; Knuth SL; Bartlett D Respir Physiol; 1997 Jan; 107(1):15-25. PubMed ID: 9089890 [TBL] [Abstract][Full Text] [Related]
28. Cat and dog: higher center of micturition. Nishizawa O; Sugaya K Neurourol Urodyn; 1994; 13(2):169-79. PubMed ID: 7518281 [TBL] [Abstract][Full Text] [Related]
29. c-Fos expression in the midbrain periaqueductal gray during static muscle contraction. Li J; Mitchell JH Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2986-93. PubMed ID: 11087256 [TBL] [Abstract][Full Text] [Related]
30. Effects of microinjection of a GABA antagonist into the periaqueductal gray upon electrically-induced vocalization in decerebrate cats. Sakamoto T; Wada K; Yamanaka Y; Shiba K; Nakajima Y Neurosci Res; 1993 Dec; 18(3):235-40. PubMed ID: 8127472 [TBL] [Abstract][Full Text] [Related]
31. Differences in neurotransmitter systems of ventrolateral periaqueductal gray between the micturition reflex and nociceptive regulation: An in vivo microdialysis study. Kitta T; Mitsui T; Kanno Y; Chiba H; Moriya K; Yoshioka M; Shinohara N Int J Urol; 2016 Jul; 23(7):593-8. PubMed ID: 27062256 [TBL] [Abstract][Full Text] [Related]
32. Influence of urothelial or suburothelial cholinergic receptors on bladder reflexes in chronic spinal cord injured cats. Ungerer TD; Kim KA; Daugherty SL; Roppolo JR; Tai C; de Groat WC Exp Neurol; 2016 Nov; 285(Pt B):147-158. PubMed ID: 27423814 [TBL] [Abstract][Full Text] [Related]
33. Effects of chemical and electrical stimulation of the midbrain on feline T2-T6 spinoreticular and spinal cell activity evoked by cardiopulmonary afferent input. Chandler MJ; Garrison DW; Brennan TJ; Foreman RD Brain Res; 1989 Sep; 496(1-2):148-64. PubMed ID: 2804627 [TBL] [Abstract][Full Text] [Related]
34. An fMRI study of the role of suprapontine brain structures in the voluntary voiding control induced by pelvic floor contraction. Zhang H; Reitz A; Kollias S; Summers P; Curt A; Schurch B Neuroimage; 2005 Jan; 24(1):174-80. PubMed ID: 15588608 [TBL] [Abstract][Full Text] [Related]
35. Brain stem integration of vocalization: role of the nucleus retroambigualis. Zhang SP; Bandler R; Davis PJ J Neurophysiol; 1995 Dec; 74(6):2500-12. PubMed ID: 8747209 [TBL] [Abstract][Full Text] [Related]
36. NK1 receptors in the medial hypothalamus potentiate defensive rage behavior elicited from the midbrain periaqueductal gray of the cat. Bhatt S; Gregg TR; Siegel A Brain Res; 2003 Mar; 966(1):54-64. PubMed ID: 12646308 [TBL] [Abstract][Full Text] [Related]
37. Neuroanatomical and psychopharmacological evidence for interaction between opioid and GABAergic neural pathways in the modulation of fear and defense elicited by electrical and chemical stimulation of the deep layers of the superior colliculus and dorsal periaqueductal gray matter. Eichenberger GC; Ribeiro SJ; Osaki MY; Maruoka RY; Resende GC; Castellan-Baldan L; Corrêa SA; Da Silva LA; Coimbra NC Neuropharmacology; 2002 Jan; 42(1):48-59. PubMed ID: 11750915 [TBL] [Abstract][Full Text] [Related]
38. Inhibition in spinal cord of nociceptive information by electrical stimulation and morphine microinjection at identical sites in midbrain of the cat. Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M J Neurophysiol; 1984 Jan; 51(1):75-89. PubMed ID: 6693935 [TBL] [Abstract][Full Text] [Related]
39. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds. Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351 [TBL] [Abstract][Full Text] [Related]
40. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat. Da Costa Gomez TM; Chandler SD; Behbehani MM Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]