These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 18385475)

  • 1. Contextual memory deficits observed in mice overexpressing small conductance Ca2+-activated K+ type 2 (KCa2.2, SK2) channels are caused by an encoding deficit.
    Stackman RW; Bond CT; Adelman JP
    Learn Mem; 2008 Apr; 15(4):208-13. PubMed ID: 18385475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory, and synaptic plasticity.
    Hammond RS; Bond CT; Strassmaier T; Ngo-Anh TJ; Adelman JP; Maylie J; Stackman RW
    J Neurosci; 2006 Feb; 26(6):1844-53. PubMed ID: 16467533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome.
    Sun J; Liu Y; Hao X; Baudry M; Bi X
    Neural Plast; 2022; 2022():3923384. PubMed ID: 36237484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The small conductance Ca
    Rice CA; Stackman RW
    Neuropharmacology; 2024 Jul; 252():109960. PubMed ID: 38631563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-conductance Ca2+-activated potassium type 2 channels regulate the formation of contextual fear memory.
    Murthy SR; Sherrin T; Jansen C; Nijholt I; Robles M; Dolga AM; Andreotti N; Sabatier JM; Knaus HG; Penner R; Todorovic C; Blank T
    PLoS One; 2015; 10(5):e0127264. PubMed ID: 25938421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo pharmacological manipulation of small conductance Ca(2+)-activated K(+) channels influences motor behavior, object memory and fear conditioning.
    Vick KA; Guidi M; Stackman RW
    Neuropharmacology; 2010 Mar; 58(3):650-9. PubMed ID: 19944112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding.
    Stackman RW; Hammond RS; Linardatos E; Gerlach A; Maylie J; Adelman JP; Tzounopoulos T
    J Neurosci; 2002 Dec; 22(23):10163-71. PubMed ID: 12451117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-conductance, Ca(2+) -activated K+ channel 2 is the key functional component of SK channels in mouse urinary bladder.
    Thorneloe KS; Knorn AM; Doetsch PE; Lashinger ES; Liu AX; Bond CT; Adelman JP; Nelson MT
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1737-43. PubMed ID: 18353877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small-conductance calcium-activated potassium type 2 channels (SK2, KCa2.2) in human brain.
    Willis M; Trieb M; Leitner I; Wietzorrek G; Marksteiner J; Knaus HG
    Brain Struct Funct; 2017 Mar; 222(2):973-979. PubMed ID: 27357310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PKA and Ube3a regulate SK2 channel trafficking to promote synaptic plasticity in hippocampus: Implications for Angelman Syndrome.
    Sun J; Liu Y; Zhu G; Cato C; Hao X; Qian L; Lin W; Adhikari R; Luo Y; Baudry M; Bi X
    Sci Rep; 2020 Jun; 10(1):9824. PubMed ID: 32555345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neonatal exposure to sevoflurane caused cognitive deficits by dysregulating SK2 channels and GluA2-lacking AMPA receptors in juvenile rat hippocampus.
    Yu X; Zhang F; Shi J
    Neuropharmacology; 2018 Oct; 141():66-75. PubMed ID: 30142400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypobaric Hypoxia-Induced Learning and Memory Impairment: Elucidating the Role of Small Conductance Ca
    Kushwah N; Jain V; Dheer A; Kumar R; Prasad D; Khan N
    Neuroscience; 2018 Sep; 388():418-429. PubMed ID: 30048783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKA phosphorylation underlies functional recruitment of sarcolemmal SK2 channels in ventricular myocytes from hypertrophic hearts.
    Hamilton S; Polina I; Terentyeva R; Bronk P; Kim TY; Roder K; Clements RT; Koren G; Choi BR; Terentyev D
    J Physiol; 2020 Jul; 598(14):2847-2873. PubMed ID: 30771223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of the SK2 calcium-activated potassium channel is required for cholinergic function in mouse cochlear hair cells.
    Kong JH; Adelman JP; Fuchs PA
    J Physiol; 2008 Nov; 586(22):5471-85. PubMed ID: 18818242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The SK2-long isoform directs synaptic localization and function of SK2-containing channels.
    Allen D; Bond CT; Luján R; Ballesteros-Merino C; Lin MT; Wang K; Klett N; Watanabe M; Shigemoto R; Stackman RW; Maylie J; Adelman JP
    Nat Neurosci; 2011 Jun; 14(6):744-9. PubMed ID: 21602822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective cognitive deficits and reduced hippocampal brain-derived neurotrophic factor mRNA expression in small-conductance calcium-activated K+ channel deficient mice.
    Jacobsen JP; Redrobe JP; Hansen HH; Petersen S; Bond CT; Adelman JP; Mikkelsen JD; Mirza NR
    Neuroscience; 2009 Sep; 163(1):73-81. PubMed ID: 19482064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preferential assembly of heteromeric small conductance calcium-activated potassium channels.
    Church TW; Weatherall KL; Corrêa SA; Prole DL; Brown JT; Marrion NV
    Eur J Neurosci; 2015 Feb; 41(3):305-15. PubMed ID: 25421315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits.
    Blank T; Nijholt I; Kye MJ; Radulovic J; Spiess J
    Nat Neurosci; 2003 Sep; 6(9):911-2. PubMed ID: 12883553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ablation of a Ca2+-activated K+ channel (SK2 channel) results in action potential prolongation in atrial myocytes and atrial fibrillation.
    Li N; Timofeyev V; Tuteja D; Xu D; Lu L; Zhang Q; Zhang Z; Singapuri A; Albert TR; Rajagopal AV; Bond CT; Periasamy M; Adelman J; Chiamvimonvat N
    J Physiol; 2009 Mar; 587(Pt 5):1087-100. PubMed ID: 19139040
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.