BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 18386050)

  • 1. Modulation of troponin C affinity for the thin filament by different cross-bridge states in skinned skeletal muscle fibers.
    Pinto JR; Veltri T; Sorenson MM
    Pflugers Arch; 2008 Sep; 456(6):1177-87. PubMed ID: 18386050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of troponin-C interactions in skinned barnacle muscle: comparison with troponin-C from rabbit striated muscle.
    Gordon AM; Qian Y; Luo Z; Wang CK; Mondares RL; Martyn DA
    J Muscle Res Cell Motil; 1997 Dec; 18(6):643-53. PubMed ID: 9429158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscle cross-bridge attachment: effects on calcium binding and calcium activation.
    Gordon AM; Ridgway EB; Yates LD; Allen T
    Adv Exp Med Biol; 1988; 226():89-99. PubMed ID: 3261497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of rigor and cycling cross-bridges on the structure of troponin C and on the Ca2+ affinity of the Ca2+-specific regulatory sites in skinned rabbit psoas fibers.
    Güth K; Potter JD
    J Biol Chem; 1987 Oct; 262(28):13627-35. PubMed ID: 3654633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myofibrillar troponin exists in three states and there is signal transduction along skeletal myofibrillar thin filaments.
    Swartz DR; Yang Z; Sen A; Tikunova SB; Davis JP
    J Mol Biol; 2006 Aug; 361(3):420-35. PubMed ID: 16857209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic interventions that alter the association of troponin C C-domain with the thin filaments of vertebrate striated muscle.
    Sousa VP; Pinto JR; Sorenson MM
    Biochim Biophys Acta; 2006 Feb; 1760(2):272-82. PubMed ID: 16300900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of skeletal muscle tension redevelopment by troponin C constructs with different Ca2+ affinities.
    Regnier M; Rivera AJ; Chase PB; Smillie LB; Sorenson MM
    Biophys J; 1999 May; 76(5):2664-72. PubMed ID: 10233080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of the calcium-regulated thin filament by myosin strong binding.
    Gorga JA; Fishbaugher DE; VanBuren P
    Biophys J; 2003 Oct; 85(4):2484-91. PubMed ID: 14507711
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of regulation of phosphate dissociation from actomyosin-ADP-Pi by thin filament proteins.
    Heeley DH; Belknap B; White HD
    Proc Natl Acad Sci U S A; 2002 Dec; 99(26):16731-6. PubMed ID: 12486217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of phosphate and ADP on shortening velocity during maximal and submaximal calcium activation of the thin filament in skeletal muscle fibers.
    Metzger JM
    Biophys J; 1996 Jan; 70(1):409-17. PubMed ID: 8770217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of troponin C binding to the myofibrillar thin filament: extraction of troponin C is not random along the length of the thin filament.
    Swartz DR; Moss RL; Greaser ML
    Biophys J; 1997 Jul; 73(1):293-305. PubMed ID: 9199794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural coupling of troponin C and actomyosin in muscle fibers.
    Li HC; Fajer PG
    Biochemistry; 1998 May; 37(19):6628-35. PubMed ID: 9578546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of contraction in striated muscle.
    Gordon AM; Homsher E; Regnier M
    Physiol Rev; 2000 Apr; 80(2):853-924. PubMed ID: 10747208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox state of troponin C cysteine in the D/E helix alters the C-domain affinity for the thin filament of vertebrate striated muscle.
    Pinto JR; de Sousa VP; Sorenson MM
    Biochim Biophys Acta; 2011 Apr; 1810(4):391-7. PubMed ID: 21145939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myosin light chain 2 modulates MgADP-induced contraction in rabbit skeletal and bovine cardiac skinned muscle.
    Fujita H; Sasaki D; Fukuda K; Ishiwata S
    J Physiol; 2002 Jul; 542(Pt 1):221-9. PubMed ID: 12096063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-bridges affect both TnC structure and calcium affinity in muscle fibers.
    Gordon AM; Ridgway EB
    Adv Exp Med Biol; 1993; 332():183-92; discussion 192-4. PubMed ID: 8109332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cooperative mechanisms in the activation dependence of the rate of force development in rabbit skinned skeletal muscle fibers.
    Fitzsimons DP; Patel JR; Campbell KS; Moss RL
    J Gen Physiol; 2001 Feb; 117(2):133-48. PubMed ID: 11158166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca(2+) and Mg(2+) binding to weak sites of TnC C-domain induces exposure of a large hydrophobic surface that leads to loss of TnC from the thin filament.
    Braga CA; Pinto JR; Valente AP; Silva JL; Sorenson MM; Foguel D; Suarez MC
    Int J Biochem Cell Biol; 2006 Jan; 38(1):110-22. PubMed ID: 16183325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of a Ca(2+)-sensitive cross-bridge state transition in skeletal muscle fibers. Effects due to variations in thin filament activation by extraction of troponin C.
    Metzger JM; Moss RL
    J Gen Physiol; 1991 Aug; 98(2):233-48. PubMed ID: 1940850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of partial extraction of troponin C on the elementary steps of the cross-bridge cycle in rabbit psoas muscle fibers.
    Zhao Y; Swamy PM; Humphries KA; Kawai M
    Biophys J; 1996 Nov; 71(5):2759-73. PubMed ID: 8913613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.