These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 18386089)

  • 1. Distribution of shear stress over smooth muscle cells in deformable arterial wall.
    Dabagh M; Jalali P; Konttinen YT; Sarkomaa P
    Med Biol Eng Comput; 2008 Jul; 46(7):649-57. PubMed ID: 18386089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The study of wall deformation and flow distribution with transmural pressure by three-dimensional model of thoracic aorta wall.
    Dabagh M; Jalali P; Konttinen YT
    Med Eng Phys; 2009 Sep; 31(7):816-24. PubMed ID: 19356969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interstitial flow through the internal elastic lamina affects shear stress on arterial smooth muscle cells.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2000 May; 278(5):H1589-97. PubMed ID: 10775138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of the shape and configuration of smooth muscle cells on the diffusion of ATP through the arterial wall.
    Dabagh M; Jalali P; Sarkomaa P
    Med Biol Eng Comput; 2007 Nov; 45(11):1005-14. PubMed ID: 17634760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow through internal elastic lamina affects shear stress on smooth muscle cells (3D simulations).
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2002 Feb; 282(2):H576-84. PubMed ID: 11788405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Internal elastic lamina affects the distribution of macromolecules in the arterial wall: a computational study.
    Tada S; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2004 Aug; 287(2):H905-13. PubMed ID: 15016628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fenestral pore size in the internal elastic lamina affects transmural flow distribution in the artery wall.
    Tada S; Tarbell JM
    Ann Biomed Eng; 2001 Jun; 29(6):456-66. PubMed ID: 11459339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneous Cellular Contributions to Elastic Laminae Formation in Arterial Wall Development.
    Lin CJ; Staiculescu MC; Hawes JZ; Cocciolone AJ; Hunkins BM; Roth RA; Lin CY; Mecham RP; Wagenseil JE
    Circ Res; 2019 Nov; 125(11):1006-1018. PubMed ID: 31590613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts.
    Shi ZD; Tarbell JM
    Ann Biomed Eng; 2011 Jun; 39(6):1608-19. PubMed ID: 21479754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fiber matrix model for the filtration through fenestral pores in a compressible arterial intima.
    Huang Y; Rumschitzki D; Chien S; Weinbaum S
    Am J Physiol; 1997 Apr; 272(4 Pt 2):H2023-39. PubMed ID: 9139991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pattern formation of vascular smooth muscle cells subject to nonuniform fluid shear stress: mediation by gradient of cell density.
    Liu SQ; Tang D; Tieche C; Alkema PK
    Am J Physiol Heart Circ Physiol; 2003 Sep; 285(3):H1072-80. PubMed ID: 12730056
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Smooth Muscle Cells Derived From Second Heart Field and Cardiac Neural Crest Reside in Spatially Distinct Domains in the Media of the Ascending Aorta-Brief Report.
    Sawada H; Rateri DL; Moorleghen JJ; Majesky MW; Daugherty A
    Arterioscler Thromb Vasc Biol; 2017 Sep; 37(9):1722-1726. PubMed ID: 28663257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pH changes in human aortic smooth muscle cells in response to fluid shear stress.
    Stamatas GN; Patrick CW; McIntire LV
    Tissue Eng; 1997; 3(4):391-403. PubMed ID: 11543590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells.
    Wang DM; Tarbell JM
    J Biomech Eng; 1995 Aug; 117(3):358-63. PubMed ID: 8618390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of fluid flow on smooth muscle cells in a 3-dimensional collagen gel model.
    Wang S; Tarbell JM
    Arterioscler Thromb Vasc Biol; 2000 Oct; 20(10):2220-5. PubMed ID: 11031207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for studying the effect of shear stress on interactions between vascular endothelial cells and smooth muscle cells.
    Chiu JJ; Chen LJ; Chen CN; Lee PL; Lee CI
    J Biomech; 2004 Apr; 37(4):531-9. PubMed ID: 14996565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms.
    López-Candales A; Holmes DR; Liao S; Scott MJ; Wickline SA; Thompson RW
    Am J Pathol; 1997 Mar; 150(3):993-1007. PubMed ID: 9060837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of fluid shear stress on migration of vascular smooth muscle cells in cocultured model.
    Sakamoto N; Ohashi T; Sato M
    Ann Biomed Eng; 2006 Mar; 34(3):408-15. PubMed ID: 16482415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic heterogeneity influences the behavior of rat aortic smooth muscle cells in collagen lattice.
    Orlandi A; Ferlosio A; Gabbiani G; Spagnoli LG; Ehrlich PH
    Exp Cell Res; 2005 Dec; 311(2):317-27. PubMed ID: 16263112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The transport of LDL across the deformable arterial wall: the effect of endothelial cell turnover and intimal deformation under hypertension.
    Dabagh M; Jalali P; Tarbell JM
    Am J Physiol Heart Circ Physiol; 2009 Sep; 297(3):H983-96. PubMed ID: 19592615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.