These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 18386093)

  • 21. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial nitric oxide synthase.
    Rossi ML; Marziliano N; Merlini PA; Bramucci E; Canosi U; Presbitero P; Arbustini E; Mannucci PM; Ardissino D
    Eur J Histochem; 2005; 49(1):39-46. PubMed ID: 15823793
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imaging of the vulnerable plaque: new modalities.
    Bhatia V; Bhatia R; Dhindsa S; Dhindsa M
    South Med J; 2003 Nov; 96(11):1142-7. PubMed ID: 14632365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vivo Translation of the CIRPI System: Revealing Molecular Pathology of Rabbit Aortic Atherosclerotic Plaques.
    Zaman RT; Yousefi S; Chibana H; Ikeno F; Long SR; Gambhir SS; Chin FT; McConnell MV; Xing L; Yeung A
    J Nucl Med; 2019 Sep; 60(9):1308-1316. PubMed ID: 30737298
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coronary Atherosclerotic Phenotype and Plaque Healing in Patients With Recurrent Acute Coronary Syndromes Compared With Patients With Long-term Clinical Stability: An In Vivo Optical Coherence Tomography Study.
    Vergallo R; Porto I; D'Amario D; Annibali G; Galli M; Benenati S; Bendandi F; Migliaro S; Fracassi F; Aurigemma C; Leone AM; Buffon A; Burzotta F; Trani C; Niccoli G; Liuzzo G; Prati F; Fuster V; Jang IK; Crea F
    JAMA Cardiol; 2019 Apr; 4(4):321-329. PubMed ID: 30865212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intravascular ultrasound and optical coherence tomography imaging of coronary atherosclerosis.
    Costopoulos C; Brown AJ; Teng Z; Hoole SP; West NE; Samady H; Bennett MR
    Int J Cardiovasc Imaging; 2016 Jan; 32(1):189-200. PubMed ID: 26153522
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictors for layered coronary plaques: an optical coherence tomography study.
    Araki M; Yonetsu T; Russo M; Kurihara O; Kim HO; Shinohara H; Thondapu V; Soeda T; Minami Y; Higuma T; Lee H; Kakuta T; Jang IK
    J Thromb Thrombolysis; 2020 Nov; 50(4):886-894. PubMed ID: 32306291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Relation of microchannel structure identified by optical coherence tomography to plaque vulnerability in patients with coronary artery disease.
    Kitabata H; Tanaka A; Kubo T; Takarada S; Kashiwagi M; Tsujioka H; Ikejima H; Kuroi A; Kataiwa H; Ishibashi K; Komukai K; Tanimoto T; Ino Y; Hirata K; Nakamura N; Mizukoshi M; Imanishi T; Akasaka T
    Am J Cardiol; 2010 Jun; 105(12):1673-8. PubMed ID: 20538113
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clinical imaging of the vulnerable plaque in the coronary arteries: new intracoronary diagnostic methods.
    Saia F; Schaar J; Regar E; Rodriguez G; De Feyter PJ; Mastik F; Marzocchi A; Marrozzini C; Ortolani P; Palmerini T; Branzi A; van der Steen AF; Serruys PW
    J Cardiovasc Med (Hagerstown); 2006 Jan; 7(1):21-8. PubMed ID: 16645356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Usefulness of optical coherence tomography in the assessment of atherosclerotic culprit lesions in acute coronary syndromes. Comparison with intravascular ultrasound and virtual histology.
    Sukiennik A; Radomski M; Rychter M; Kubica J
    Cardiol J; 2008; 15(6):561-3. PubMed ID: 19039763
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biological profile of monocyte-derived macrophages in coronary heart disease patients: implications for plaque morphology.
    Eligini S; Cosentino N; Fiorelli S; Fabbiocchi F; Niccoli G; Refaat H; Camera M; Calligaris G; De Martini S; Bonomi A; Veglia F; Fracassi F; Crea F; Marenzi G; Tremoli E
    Sci Rep; 2019 Jun; 9(1):8680. PubMed ID: 31213640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical molecular imaging of atherosclerosis using nanoparticles: shedding new light on the darkness.
    Douma K; Megens RT; van Zandvoort MA
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2011; 3(4):376-88. PubMed ID: 21448988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo evaluation of fibrous cap thickness by optical coherence tomography for positive remodeling and low-attenuation plaques assessed by computed tomography angiography.
    Sato A; Hoshi T; Kakefuda Y; Hiraya D; Watabe H; Kawabe M; Akiyama D; Koike A; Aonuma K
    Int J Cardiol; 2015 Mar; 182():419-25. PubMed ID: 25596470
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanisms of plaque rupture: mechanical and biologic interactions.
    Arroyo LH; Lee RT
    Cardiovasc Res; 1999 Feb; 41(2):369-75. PubMed ID: 10341836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neopterin Counters Vascular Inflammation and Atherosclerosis.
    Shirai R; Sato K; Yamashita T; Yamaguchi M; Okano T; Watanabe-Kominato K; Watanabe R; Matsuyama TA; Ishibashi-Ueda H; Koba S; Kobayashi Y; Hirano T; Watanabe T
    J Am Heart Assoc; 2018 Feb; 7(3):. PubMed ID: 29420219
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Morphologic discrepancies of coronary atherosclerotic lesions between patients with stable and unstable angina plus acute myocardial infarction].
    Wei L; Shi H; Guo A
    Zhonghua Bing Li Xue Za Zhi; 1998 Jun; 27(3):168-70. PubMed ID: 11244973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sex Differences in Nonculprit Coronary Plaque Microstructures on Frequency-Domain Optical Coherence Tomography in Acute Coronary Syndromes and Stable Coronary Artery Disease.
    Kataoka Y; Puri R; Hammadah M; Duggal B; Uno K; Kapadia SR; Tuzcu EM; Nissen SE; King P; Nicholls SJ
    Circ Cardiovasc Imaging; 2016 Aug; 9(8):. PubMed ID: 27511975
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coronary Calcification and Plaque Vulnerability: An Optical Coherence Tomographic Study.
    Ong DS; Lee JS; Soeda T; Higuma T; Minami Y; Wang Z; Lee H; Yokoyama H; Yokota T; Okumura K; Jang IK
    Circ Cardiovasc Imaging; 2016 Jan; 9(1):. PubMed ID: 26743463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CD98 regulates vascular smooth muscle cell proliferation in atherosclerosis.
    Baumer Y; McCurdy S; Alcala M; Mehta N; Lee BH; Ginsberg MH; Boisvert WA
    Atherosclerosis; 2017 Jan; 256():105-114. PubMed ID: 28012647
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neoatherosclerosis in Patients With Coronary Stent Thrombosis: Findings From Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium).
    Joner M; Koppara T; Byrne RA; Castellanos MI; Lewerich J; Novotny J; Guagliumi G; Xhepa E; Adriaenssens T; Godschalk TC; Malik N; Alfonso F; Tada T; Neumann FJ; Desmet W; Ten Berg JM; Gershlick AH; Feldman LJ; Massberg S; Kastrati A;
    JACC Cardiovasc Interv; 2018 Jul; 11(14):1340-1350. PubMed ID: 30025727
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.