BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 18386132)

  • 1. The fate of exogenous iodine in pot soil cultivated with vegetables.
    Hong CL; Weng HX; Yan AL; Islam EU
    Environ Geochem Health; 2009 Feb; 31(1):99-108. PubMed ID: 18386132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Characteristics of iodine uptake and accumulation by vegetables].
    Hong CL; Weng HX; Yan AL; Xie LL
    Ying Yong Sheng Tai Xue Bao; 2007 Oct; 18(10):2313-8. PubMed ID: 18163316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selecting iodine-enriched vegetables and the residual effect of iodate application to soil.
    Dai JL; Zhu YG; Zhang M; Huang YZ
    Biol Trace Elem Res; 2004 Dec; 101(3):265-76. PubMed ID: 15564656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Agronomic iodine biofortification of leafy vegetables grown in Vertisols, Oxisols and Alfisols.
    Ligowe IS; Bailey EH; Young SD; Ander EL; Kabambe V; Chilimba AD; Lark RM; Nalivata PC
    Environ Geochem Health; 2021 Jan; 43(1):361-374. PubMed ID: 32965604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Residual of exogenous iodine in forest soils and its effect on some wild-vegetable plants].
    Cui X; Sang Y; Song J
    Ying Yong Sheng Tai Xue Bao; 2003 Oct; 14(10):1612-6. PubMed ID: 14986350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.
    Wang R; Guo J; Xu Y; Ding Y; Shen Y; Zheng X; Feng R
    Ecotoxicol Environ Saf; 2016 Feb; 124():239-247. PubMed ID: 26546906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increment of iodine content in vegetable plants by applying iodized fertilizer and the residual characteristics of iodine in soil.
    Weng HX; Weng JK; Yan AL; Hong CL; Yong WB; Qin YC
    Biol Trace Elem Res; 2008; 123(1-3):218-28. PubMed ID: 18265951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China.
    Yang B; Gao Y; Zhang C; Zheng X; Li B
    Environ Sci Pollut Res Int; 2020 Jan; 27(1):391-398. PubMed ID: 31792793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Source identification and exchangeability of heavy metals accumulated in vegetable soils in the coastal plain of eastern Zhejiang province, China.
    Qiutong X; Mingkui Z
    Ecotoxicol Environ Saf; 2017 Aug; 142():410-416. PubMed ID: 28454053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contents of minerals in green leafy vegetables cultivated in soil fortified with different chemical fertilizers.
    Reddy NS; Bhatt G
    Plant Foods Hum Nutr; 2001; 56(1):1-6. PubMed ID: 11213164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vegetable and fruit wastes: Valuable source for organic fertilizer for effective growth of short-term crops: Solanum lycopersicum and Capsicum annum.
    Ramamoorthy K; Dhanraj R; Vijayakumar N; Ma Y; Al Obaid S; Narayanan M
    Environ Res; 2024 Jun; 251(Pt 2):118727. PubMed ID: 38490629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Effects of Plastic Film Mulching and Nitrogen Fertilizer Application on CH
    Ni X; Jiang CS; Chen SJ; Li XX; Shi XJ; Hao QJ
    Huan Jing Ke Xue; 2019 May; 40(5):2404-2412. PubMed ID: 31087882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in the fate and biological effects of sulfamethoxazole, norfloxacin and doxycycline in different vegetable-soil systems following manure application.
    Wang J; Lin H; Sun W; Xia Y; Ma J; Fu J; Zhang Z; Wu H; Qian M
    J Hazard Mater; 2016 Mar; 304():49-57. PubMed ID: 26546703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences of cadmium absorption and accumulation in selected vegetable crops.
    Ni WZ; Yang XE; Long XX
    J Environ Sci (China); 2002 Jul; 14(3):399-405. PubMed ID: 12211993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variations in the natural ¹⁵N abundance of Brassica chinensis grown in uncultivated soil affected by different nitrogen fertilizers.
    Yuan Y; Hu G; Zhao M; Chen T; Zhang Y; Zhu J; Wang Q
    J Agric Food Chem; 2014 Nov; 62(47):11386-92. PubMed ID: 25369912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow-release nitrogen fertilizers can improve yield and reduce Cd concentration in pakchoi (Brassica chinensis L.) grown in Cd-contaminated soil.
    Zhang RR; Liu Y; Xue WL; Chen RX; Du ST; Jin CW
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):25074-25083. PubMed ID: 27677996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effects of different fertilization modes on vegetable growth, fertilizer nitrogen utilization, and nitrogen loss from vegetable field].
    Huang DF; Wang G; Li WH; Qiu XX
    Ying Yong Sheng Tai Xue Bao; 2009 Mar; 20(3):631-8. PubMed ID: 19637603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inorganic and organic fertilizers application enhanced antibiotic resistome in greenhouse soils growing vegetables.
    Sun Y; Qiu T; Gao M; Shi M; Zhang H; Wang X
    Ecotoxicol Environ Saf; 2019 Sep; 179():24-30. PubMed ID: 31022652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving human micronutrient nutrition through biofortification in the soil-plant system: China as a case study.
    Yang XE; Chen WR; Feng Y
    Environ Geochem Health; 2007 Oct; 29(5):413-28. PubMed ID: 17385049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Applications of nanotechnology on vegetable crops.
    Salama DM; Abd El-Aziz ME; Rizk FA; Abd Elwahed MSA
    Chemosphere; 2021 Mar; 266():129026. PubMed ID: 33250225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.