BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 18386278)

  • 1. Identification of trinucleotide repeat ligands with a FRET melting assay.
    Amrane S; De Cian A; Rosu F; Kaiser M; De Pauw E; Teulade-Fichou MP; Mergny JL
    Chembiochem; 2008 May; 9(8):1229-34. PubMed ID: 18386278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homogeneous selecting of a quadruplex-binding ligand-based gold nanoparticle fluorescence resonance energy transfer assay.
    Jin Y; Li H; Bai J
    Anal Chem; 2009 Jul; 81(14):5709-15. PubMed ID: 19527045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic stability of RNA structures formed by CNG trinucleotide repeats. Implication for prediction of RNA structure.
    Broda M; Kierzek E; Gdaniec Z; Kulinski T; Kierzek R
    Biochemistry; 2005 Aug; 44(32):10873-82. PubMed ID: 16086590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A FRET-based screening assay for nucleic acid ligands.
    Renčiuk D; Zhou J; Beaurepaire L; Guédin A; Bourdoncle A; Mergny JL
    Methods; 2012 May; 57(1):122-8. PubMed ID: 22465278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isaindigotone derivatives: a new class of highly selective ligands for telomeric G-quadruplex DNA.
    Tan JH; Ou TM; Hou JQ; Lu YJ; Huang SL; Luo HB; Wu JY; Huang ZS; Wong KY; Gu LQ
    J Med Chem; 2009 May; 52(9):2825-35. PubMed ID: 19354252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homogeneous noncompetitive assay of protein via Förster-resonance-energy-transfer with tryptophan residue(s) as intrinsic donor(s) and fluorescent ligand as acceptor.
    Liao F; Xie Y; Yang X; Deng P; Chen Y; Xie G; Zhu S; Liu B; Yuan H; Liao J; Zhao Y; Yu M
    Biosens Bioelectron; 2009 Sep; 25(1):112-7. PubMed ID: 19586766
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescent resonance energy transfer (FRET) based detection of a multiplex ligation-dependent probe amplification assay (MLPA) product.
    Ozalp VC; Nygren AO; O'Sullivan CK
    Mol Biosyst; 2008 Sep; 4(9):950-4. PubMed ID: 18704233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET-based optical assay for monitoring riboswitch activation.
    Harbaugh S; Kelley-Loughnane N; Davidson M; Narayanan L; Trott S; Chushak YG; Stone MO
    Biomacromolecules; 2009 May; 10(5):1055-60. PubMed ID: 19358526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleic acid base analog FRET-pair facilitating detailed structural measurements in nucleic acid containing systems.
    Börjesson K; Preus S; El-Sagheer AH; Brown T; Albinsson B; Wilhelmsson LM
    J Am Chem Soc; 2009 Apr; 131(12):4288-93. PubMed ID: 19317504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis and biological evaluation of novel 4,5-bis(dialkylaminoalkyl)-substituted acridines as potent telomeric G-quadruplex ligands.
    Laronze-Cochard M; Kim YM; Brassart B; Riou JF; Laronze JY; Sapi J
    Eur J Med Chem; 2009 Oct; 44(10):3880-8. PubMed ID: 19467742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A bulge binding agent with novel wedge-shape topology for stimulation of DNA triplet repeat strand slippage synthesis.
    Liu L; Li H; Yi L; Yang X; Wen X; Xi Z
    Bioorg Med Chem Lett; 2008 Dec; 18(23):6184-8. PubMed ID: 18951785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time fluorescence resonance energy transfer PCR with melting curve analysis for the detection of Opisthorchis viverrini in fish intermediate hosts.
    Intapan PM; Thanchomnang T; Lulitanond V; Phongsaskulchoti P; Maleewong W
    Vet Parasitol; 2008 Oct; 157(1-2):65-71. PubMed ID: 18760538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence resonance energy transfer analysis of alpha 2a-adrenergic receptor activation reveals distinct agonist-specific conformational changes.
    Zürn A; Zabel U; Vilardaga JP; Schindelin H; Lohse MJ; Hoffmann C
    Mol Pharmacol; 2009 Mar; 75(3):534-41. PubMed ID: 19106230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new assay format for NF-kappaB based on a DNA triple helix and a fluorescence resonance energy transfer.
    Altevogt D; Hrenn A; Kern C; Clima L; Bannwarth W; Merfort I
    Org Biomol Chem; 2009 Oct; 7(19):3934-9. PubMed ID: 19763295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay.
    Shyu YJ; Suarez CD; Hu CD
    Nat Protoc; 2008; 3(11):1693-702. PubMed ID: 18846096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence coincidence spectroscopy for single-molecule fluorescence resonance energy-transfer measurements.
    Orte A; Clarke RW; Klenerman D
    Anal Chem; 2008 Nov; 80(22):8389-97. PubMed ID: 18855410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A single nucleotide polymorphism melt curve assay employing an intercalating dye probe fluorescence resonance energy transfer for forensic analysis.
    Halpern MD; Ballantyne J
    Anal Biochem; 2009 Aug; 391(1):1-10. PubMed ID: 19433053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic control of fluorescence resonance energy transfer: breaking the FRET limit.
    Zhang CY; Johnson LW
    Angew Chem Int Ed Engl; 2007; 46(19):3482-5. PubMed ID: 17385812
    [No Abstract]   [Full Text] [Related]  

  • 19. Application of an allosteric model to describe the interactions among retinol binding protein 4, transthyretin, and small molecule retinol binding protein 4 ligands.
    Coward P; Conn M; Tang J; Xiong F; Menjares A; Reagan JD
    Anal Biochem; 2009 Jan; 384(2):312-20. PubMed ID: 18952041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching.
    Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB
    J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.