BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 18386642)

  • 1. [Electrical stimulation promote proliferation and differentiation of endogenous neural stem cells in normal and injured spinal cord].
    Qun L
    Zhen Ci Yan Jiu; 2008 Feb; 33(1):34-6, 40. PubMed ID: 18386642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries.
    Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF
    Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate of endogenous stem/progenitor cells following spinal cord injury.
    Horky LL; Galimi F; Gage FH; Horner PJ
    J Comp Neurol; 2006 Oct; 498(4):525-38. PubMed ID: 16874803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of mature adipocyte-derived dedifferentiated fat cells promotes locomotor functional recovery by remyelination and glial scar reduction after spinal cord injury in mice.
    Yamada H; Ito D; Oki Y; Kitagawa M; Matsumoto T; Watari T; Kano K
    Biochem Biophys Res Commun; 2014 Nov; 454(2):341-6. PubMed ID: 25451251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Transplantation of neural stem cells into spinal cord after injury].
    Nakamura M; Toyama Y
    Nihon Rinsho; 2003 Mar; 61(3):463-8. PubMed ID: 12701174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor cells after spinal cord injury.
    Zhang C; Zhang G; Rong W; Wang A; Wu C; Huo X
    Biomed Mater Eng; 2014; 24(6):3629-36. PubMed ID: 25227077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increase of NG2-positive cells associated with radial glia following traumatic spinal cord injury in adult rats.
    Wu D; Shibuya S; Miyamoto O; Itano T; Yamamoto T
    J Neurocytol; 2005 Dec; 34(6):459-69. PubMed ID: 16902766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of neuronal phenotypes from NG2+ glial progenitors by inhibiting epidermal growth factor receptor in mouse spinal cord injury.
    Ju P; Zhang S; Yeap Y; Feng Z
    Glia; 2012 Nov; 60(11):1801-14. PubMed ID: 22865681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Isolation and culture of neural stem cells in injured region of compressive spinal cord injury in adult rat].
    Yang P; He X; Li H; Lan B; Wang G; Liu Y; Li Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2009 Feb; 23(2):151-5. PubMed ID: 19275093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord.
    Lepore AC; Fischer I
    Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors.
    Yoo S; Wrathall JR
    Dev Neurobiol; 2007 Jun; 67(7):860-74. PubMed ID: 17506499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats.
    Ogawa Y; Sawamoto K; Miyata T; Miyao S; Watanabe M; Nakamura M; Bregman BS; Koike M; Uchiyama Y; Toyama Y; Okano H
    J Neurosci Res; 2002 Sep; 69(6):925-33. PubMed ID: 12205685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional electrical stimulation helps replenish progenitor cells in the injured spinal cord of adult rats.
    Becker D; Gary DS; Rosenzweig ES; Grill WM; McDonald JW
    Exp Neurol; 2010 Apr; 222(2):211-8. PubMed ID: 20059998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and therapeutic evaluation of a Nestin⁺ CNP⁺ NG2⁺ cell population on mouse spinal cord injury.
    Liu R; Zhang S; Yang H; Ju P; Xia Y; Shi Y; Lim TH; Lim AS; Liang F; Feng Z
    Exp Neurol; 2015 Jul; 269():28-42. PubMed ID: 25862288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of substrate elastic modulus on neural precursor cell behavior.
    Previtera ML; Hui M; Verma D; Shahin AJ; Schloss R; Langrana NA
    Ann Biomed Eng; 2013 Jun; 41(6):1193-207. PubMed ID: 23429962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison between fetal spinal-cord- and forebrain-derived neural stem/progenitor cells as a source of transplantation for spinal cord injury.
    Watanabe K; Nakamura M; Iwanami A; Fujita Y; Kanemura Y; Toyama Y; Okano H
    Dev Neurosci; 2004; 26(2-4):275-87. PubMed ID: 15711067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential roles of the neural stem cell in the restoration of the injured spinal cord: review of the literature.
    Kabatas S; Teng YD
    Turk Neurosurg; 2010 Apr; 20(2):103-10. PubMed ID: 20401836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice.
    Samaddar S; Vazquez K; Ponkia D; Toruno P; Sahbani K; Begum S; Abouelela A; Mekhael W; Ahmed Z
    J Appl Physiol (1985); 2017 Feb; 122(2):339-353. PubMed ID: 27932680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergy between immune cells and adult neural stem/progenitor cells promotes functional recovery from spinal cord injury.
    Ziv Y; Avidan H; Pluchino S; Martino G; Schwartz M
    Proc Natl Acad Sci U S A; 2006 Aug; 103(35):13174-9. PubMed ID: 16938843
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.