BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 18386853)

  • 1. Multiconfigurational g tensor calculations as a probe for the covalency of the copper-ligand bonds in copper(II) complexes: [CuCl4]2-, [Cu(NH3)4]2+, and plastocyanin.
    Vancoillie S; Pierloot K
    J Phys Chem A; 2008 May; 112(17):4011-9. PubMed ID: 18386853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study.
    Sinnecker S; Neese F
    J Comput Chem; 2006 Sep; 27(12):1463-75. PubMed ID: 16807973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins.
    Remenyi C; Reviakine R; Kaupp M
    J Phys Chem B; 2007 Jul; 111(28):8290-304. PubMed ID: 17592871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study.
    Ando K
    J Phys Chem B; 2008 Jan; 112(2):250-6. PubMed ID: 18047310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state.
    Ducéré JM; Goursot A; Berthomieu D
    J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin.
    Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS
    Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry.
    Díaz-Moreno I; Díaz-Quintana A; Díaz-Moreno S; Subías G; De la Rosa MA
    FEBS Lett; 2006 Nov; 580(26):6187-94. PubMed ID: 17064694
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum chemical calculation of type-1 cu reduction potential: ligand interaction and solvation effect.
    Si D; Li H
    J Phys Chem A; 2009 Nov; 113(46):12979-87. PubMed ID: 19810740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites.
    Solomon EI
    Inorg Chem; 2006 Oct; 45(20):8012-25. PubMed ID: 16999398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical description of the structure and magnetic properties of nitroxide-Cu(II)-nitroxide spin triads by means of multiconfigurational ab initio calculations.
    Vancoillie S; Rulísek L; Neese F; Pierloot K
    J Phys Chem A; 2009 May; 113(21):6149-57. PubMed ID: 19413285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation.
    Hansen DF; Led JJ
    J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer.
    DeBeer George S; Metz M; Szilagyi RK; Wang H; Cramer SP; Lu Y; Tolman WB; Hedman B; Hodgson KO; Solomon EI
    J Am Chem Soc; 2001 Jun; 123(24):5757-67. PubMed ID: 11403610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2).
    Vancoillie S; Malmqvist PA; Pierloot K
    Chemphyschem; 2007 Aug; 8(12):1803-15. PubMed ID: 17647251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protonation of type-1 Cu bound histidines: a quantum chemical study.
    Su P; Li H
    Inorg Chem; 2010 Jan; 49(2):435-44. PubMed ID: 20000723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study.
    Sinnecker S; Neese F
    J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of the relative reduction potentials of type-1 copper sites in proteins.
    Li H; Webb SP; Ivanic J; Jensen JH
    J Am Chem Soc; 2004 Jun; 126(25):8010-9. PubMed ID: 15212551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DFT calculations of the EPR parameters for Cu(ii) DETA imidazole complexes.
    Ames WM; Larsen SC
    Phys Chem Chem Phys; 2009 Oct; 11(37):8266-74. PubMed ID: 19756283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions.
    Tatchen J; Kleinschmidt M; Marian CM
    J Chem Phys; 2009 Apr; 130(15):154106. PubMed ID: 19388735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A magnetic and electronic circular dichroism study of azurin, plastocyanin, cucumber basic protein, and nitrite reductase based on time-dependent density functional theory calculations.
    Zhekova HR; Seth M; Ziegler T
    J Phys Chem A; 2010 Jun; 114(21):6308-21. PubMed ID: 20450218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes.
    Varadwaj PR; Cukrowski I; Marques HM
    J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.