These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
236 related articles for article (PubMed ID: 18386853)
1. Multiconfigurational g tensor calculations as a probe for the covalency of the copper-ligand bonds in copper(II) complexes: [CuCl4]2-, [Cu(NH3)4]2+, and plastocyanin. Vancoillie S; Pierloot K J Phys Chem A; 2008 May; 112(17):4011-9. PubMed ID: 18386853 [TBL] [Abstract][Full Text] [Related]
2. QM/MM calculations with DFT for taking into account protein effects on the EPR and optical spectra of metalloproteins. Plastocyanin as a case study. Sinnecker S; Neese F J Comput Chem; 2006 Sep; 27(12):1463-75. PubMed ID: 16807973 [TBL] [Abstract][Full Text] [Related]
3. Density functional study of EPR parameters and spin-density distribution of azurin and other blue copper proteins. Remenyi C; Reviakine R; Kaupp M J Phys Chem B; 2007 Jul; 111(28):8290-304. PubMed ID: 17592871 [TBL] [Abstract][Full Text] [Related]
4. Ligand-to-metal charge-transfer dynamics in a blue copper protein plastocyanin: a molecular dynamics study. Ando K J Phys Chem B; 2008 Jan; 112(2):250-6. PubMed ID: 18047310 [TBL] [Abstract][Full Text] [Related]
5. Comparative density functional theory study of the binding of ligands to Cu+ and Cu2+: Influence of the coordination and oxidation state. Ducéré JM; Goursot A; Berthomieu D J Phys Chem A; 2005 Jan; 109(2):400-8. PubMed ID: 16833359 [TBL] [Abstract][Full Text] [Related]
6. Active site structures and the redox properties of blue copper proteins: atomic resolution structure of azurin II and electronic structure calculations of azurin, plastocyanin and stellacyanin. Paraskevopoulos K; Sundararajan M; Surendran R; Hough MA; Eady RR; Hillier IH; Hasnain SS Dalton Trans; 2006 Jul; (25):3067-76. PubMed ID: 16786065 [TBL] [Abstract][Full Text] [Related]
7. Transient binding of plastocyanin to its physiological redox partners modifies the copper site geometry. Díaz-Moreno I; Díaz-Quintana A; Díaz-Moreno S; Subías G; De la Rosa MA FEBS Lett; 2006 Nov; 580(26):6187-94. PubMed ID: 17064694 [TBL] [Abstract][Full Text] [Related]
8. Quantum chemical calculation of type-1 cu reduction potential: ligand interaction and solvation effect. Si D; Li H J Phys Chem A; 2009 Nov; 113(46):12979-87. PubMed ID: 19810740 [TBL] [Abstract][Full Text] [Related]
9. Spectroscopic methods in bioinorganic chemistry: blue to green to red copper sites. Solomon EI Inorg Chem; 2006 Oct; 45(20):8012-25. PubMed ID: 16999398 [TBL] [Abstract][Full Text] [Related]
10. Theoretical description of the structure and magnetic properties of nitroxide-Cu(II)-nitroxide spin triads by means of multiconfigurational ab initio calculations. Vancoillie S; Rulísek L; Neese F; Pierloot K J Phys Chem A; 2009 May; 113(21):6149-57. PubMed ID: 19413285 [TBL] [Abstract][Full Text] [Related]
11. Mapping the electronic structure of the blue copper site in plastocyanin by NMR relaxation. Hansen DF; Led JJ J Am Chem Soc; 2004 Feb; 126(4):1247-52. PubMed ID: 14746497 [TBL] [Abstract][Full Text] [Related]
12. A quantitative description of the ground-state wave function of Cu(A) by X-ray absorption spectroscopy: comparison to plastocyanin and relevance to electron transfer. DeBeer George S; Metz M; Szilagyi RK; Wang H; Cramer SP; Lu Y; Tolman WB; Hedman B; Hodgson KO; Solomon EI J Am Chem Soc; 2001 Jun; 123(24):5757-67. PubMed ID: 11403610 [TBL] [Abstract][Full Text] [Related]
13. Calculation of EPR g tensors for transition-metal complexes based on multiconfigurational perturbation theory (CASPT2). Vancoillie S; Malmqvist PA; Pierloot K Chemphyschem; 2007 Aug; 8(12):1803-15. PubMed ID: 17647251 [TBL] [Abstract][Full Text] [Related]
14. Protonation of type-1 Cu bound histidines: a quantum chemical study. Su P; Li H Inorg Chem; 2010 Jan; 49(2):435-44. PubMed ID: 20000723 [TBL] [Abstract][Full Text] [Related]
15. Spin-spin contributions to the zero-field splitting tensor in organic triplets, carbenes and biradicals-a density functional and ab initio study. Sinnecker S; Neese F J Phys Chem A; 2006 Nov; 110(44):12267-75. PubMed ID: 17078624 [TBL] [Abstract][Full Text] [Related]
16. Determinants of the relative reduction potentials of type-1 copper sites in proteins. Li H; Webb SP; Ivanic J; Jensen JH J Am Chem Soc; 2004 Jun; 126(25):8010-9. PubMed ID: 15212551 [TBL] [Abstract][Full Text] [Related]
17. DFT calculations of the EPR parameters for Cu(ii) DETA imidazole complexes. Ames WM; Larsen SC Phys Chem Chem Phys; 2009 Oct; 11(37):8266-74. PubMed ID: 19756283 [TBL] [Abstract][Full Text] [Related]
18. Calculating electron paramagnetic resonance g-matrices for triplet state molecules from multireference spin-orbit configuration interaction wave functions. Tatchen J; Kleinschmidt M; Marian CM J Chem Phys; 2009 Apr; 130(15):154106. PubMed ID: 19388735 [TBL] [Abstract][Full Text] [Related]
19. A magnetic and electronic circular dichroism study of azurin, plastocyanin, cucumber basic protein, and nitrite reductase based on time-dependent density functional theory calculations. Zhekova HR; Seth M; Ziegler T J Phys Chem A; 2010 Jun; 114(21):6308-21. PubMed ID: 20450218 [TBL] [Abstract][Full Text] [Related]
20. DFT-UX3LYP studies on the coordination chemistry of Ni2+. Part 1: Six coordinate [Ni(NH3)n(H2O)(6-n)]2+ complexes. Varadwaj PR; Cukrowski I; Marques HM J Phys Chem A; 2008 Oct; 112(42):10657-66. PubMed ID: 18823109 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]