BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 18386943)

  • 1. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering of poly(ethylene glycol) chain-tethered surfaces to obtain high-performance bionanoparticles.
    Nagasaki Y
    Sci Technol Adv Mater; 2010 Oct; 11(5):054505. PubMed ID: 27877362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced dispersion stability of gold nanoparticles by the physisorption of cyclic poly(ethylene glycol).
    Wang Y; Quinsaat JEQ; Ono T; Maeki M; Tokeshi M; Isono T; Tajima K; Satoh T; Sato SI; Miura Y; Yamamoto T
    Nat Commun; 2020 Nov; 11(1):6089. PubMed ID: 33257670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement.
    Kang KA; Wang J; Jasinski JB; Achilefu S
    J Nanobiotechnology; 2011 May; 9():16. PubMed ID: 21569249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Would Colloidal Gold Nanocarriers Present An Effective Diagnosis Or Treatment For Ischemic Stroke?
    Amani H; Mostafavi E; Alebouyeh MR; Arzaghi H; Akbarzadeh A; Pazoki-Toroudi H; Webster TJ
    Int J Nanomedicine; 2019; 14():8013-8031. PubMed ID: 31632015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of
    Singh N; Dahiya B; Radhakrishnan VS; Prasad T; Mehta PK
    Int J Nanomedicine; 2018; 13():8523-8535. PubMed ID: 30587975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oligothiol graft-copolymer coatings stabilize gold nanoparticles against harsh experimental conditions.
    Kang JS; Taton TA
    Langmuir; 2012 Dec; 28(49):16751-60. PubMed ID: 22957513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biophysical study of DC electric field induced stable formation of albumin-gold nanoparticles corona and curcumin binding.
    Kumar M; Jaiswal VD; Pangam DS; Bhatia P; Kulkarni A; Dongre PM
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Jan; 305():123469. PubMed ID: 37778178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluctuation Spectroscopy Analysis of Glucose Capped Gold Nanoparticles.
    Porcaro F; Miao Y; Kota R; Haun JB; Polzonetti G; Battocchio C; Gratton E
    Langmuir; 2016 Dec; 32(50):13409-13417. PubMed ID: 27935716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zonal Intratumoral Delivery of Nanoparticles Guided by Surface Functionalization.
    Terracciano R; Carcamo-Bahena Y; Royal ALR; Messina L; Delk J; Butler EB; Demarchi D; Grattoni A; Wang Z; Cristini V; Dogra P; Filgueira CS
    Langmuir; 2022 Nov; 38(45):13983-13994. PubMed ID: 36318182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification of monodisperse and biocompatible gold nanoparticles by single-particle ICP-MS.
    Frickenstein AN; Mukherjee S; Harcourt T; He Y; Sheth V; Wang L; Malik Z; Wilhelm S
    Anal Bioanal Chem; 2023 Jul; 415(18):4353-4366. PubMed ID: 36670192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gd@C
    Horiguchi Y; Kudo S; Nagasaki Y
    Sci Technol Adv Mater; 2011 Aug; 12(4):044607. PubMed ID: 27877415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticle-Induced Cell Death and Potential Applications in Nanomedicine.
    Sun H; Jia J; Jiang C; Zhai S
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29518914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying factors controlling cellular uptake of gold nanoparticles by machine learning.
    Bilgi E; Winkler DA; Oksel Karakus C
    J Drug Target; 2024 Dec; 32(1):66-73. PubMed ID: 38009690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assembly of Multicomponent Nano-Bioconjugates Composed of Mesoporous Silica Nanoparticles, Proteins, and Gold Nanoparticles.
    Delpiano GR; Casula MF; Piludu M; Corpino R; Ricci PC; Vallet-RegĂ­ M; Sanjust E; Monduzzi M; Salis A
    ACS Omega; 2019 Jun; 4(6):11044-11052. PubMed ID: 31460202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytotoxicity Induction by the Oxidative Reactivity of Nanoparticles Revealed by a Combinatorial GNP Library with Diverse Redox Properties.
    Wang S; Yan X; Su G; Yan B
    Molecules; 2021 Jun; 26(12):. PubMed ID: 34198523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A non-sacrificial method for the quantification of poly(ethylene glycol) grafting density on gold nanoparticles for applications in nanomedicine.
    Lu J; Xue Y; Shi R; Kang J; Zhao CY; Zhang NN; Wang CY; Lu ZY; Liu K
    Chem Sci; 2019 Feb; 10(7):2067-2074. PubMed ID: 30842864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Peptide Mediated In Vivo Tumor Targeting of Nanoparticles through Optimization in Single and Multilayer In Vitro Cell Models.
    Yang C; Bromma K; Chithrani D
    Cancers (Basel); 2018 Mar; 10(3):. PubMed ID: 29558451
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gold nanoparticle sensor for homocysteine thiolactone-induced protein modification.
    Gates AT; Fakayode SO; Lowry M; Ganea GM; Murugeshu A; Robinson JW; Strongin RM; Warner IM
    Langmuir; 2008 Apr; 24(8):4107-13. PubMed ID: 18324853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved efficiency and stability of secnidazole - An ideal delivery system.
    Khan S; Haseeb M; Baig MH; Bagga PS; Siddiqui HH; Kamal MA; Khan MS
    Saudi J Biol Sci; 2015 Jan; 22(1):42-9. PubMed ID: 25561882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.