These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
298 related articles for article (PubMed ID: 18387039)
1. Spatial control of pa-GFP photoactivation in living cells. Testa I; Parazzoli D; Barozzi S; Garrè M; Faretta M; Diaspro A J Microsc; 2008 Apr; 230(Pt 1):48-60. PubMed ID: 18387039 [TBL] [Abstract][Full Text] [Related]
2. One- and two-photon photoactivation of a paGFP-fusion protein in live Drosophila embryos. Post JN; Lidke KA; Rieger B; Arndt-Jovin DJ FEBS Lett; 2005 Jan; 579(2):325-30. PubMed ID: 15642339 [TBL] [Abstract][Full Text] [Related]
3. A new configuration of the Zeiss LSM 510 for simultaneous optical separation of green and red fluorescent protein pairs. Anderson KI; Sanderson J; Gerwig S; Peychl J Cytometry A; 2006 Aug; 69(8):920-9. PubMed ID: 16969813 [TBL] [Abstract][Full Text] [Related]
4. Direct visualization of the dynamics of membrane-anchor proteins in living cells. Wang C; Fu G; Wang J; Wang G; Cheng Y; Xu ZZ J Microsc; 2008 Jan; 229(Pt 1):67-77. PubMed ID: 18173646 [TBL] [Abstract][Full Text] [Related]
5. Multifocal two-photon laser scanning microscopy combined with photo-activatable GFP for in vivo monitoring of intracellular protein dynamics in real time. Martini J; Schmied K; Palmisano R; Toensing K; Anselmetti D; Merkle T J Struct Biol; 2007 Jun; 158(3):401-9. PubMed ID: 17363273 [TBL] [Abstract][Full Text] [Related]
6. Probing nucleocytoplasmic transport by two-photon activation of PA-GFP. Chen Y; MacDonald PJ; Skinner JP; Patterson GH; Müller JD Microsc Res Tech; 2006 Mar; 69(3):220-6. PubMed ID: 16538629 [TBL] [Abstract][Full Text] [Related]
8. Fluorescence anisotropy imaging microscopy for homo-FRET in living cells. Tramier M; Coppey-Moisan M Methods Cell Biol; 2008; 85():395-414. PubMed ID: 18155472 [TBL] [Abstract][Full Text] [Related]
9. Fluorescence resonance energy transfer of GFP and YFP by spectral imaging and quantitative acceptor photobleaching. Dinant C; van Royen ME; Vermeulen W; Houtsmuller AB J Microsc; 2008 Jul; 231(Pt 1):97-104. PubMed ID: 18638193 [TBL] [Abstract][Full Text] [Related]
10. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Al-Gubory KH; Houdebine LM Eur J Cell Biol; 2006 Aug; 85(8):837-45. PubMed ID: 16781011 [TBL] [Abstract][Full Text] [Related]
11. Deconvolution and chromatic aberration corrections in quantifying colocalization of a transcription factor in three-dimensional cellular space. Abraham T; Allan SE; Levings MK Micron; 2010 Aug; 41(6):633-40. PubMed ID: 20392647 [TBL] [Abstract][Full Text] [Related]
12. Confocal imaging of subcellular Ca2+ concentrations using a dual-excitation ratiometric indicator based on green fluorescent protein. Shimozono S; Fukano T; Nagai T; Kirino Y; Mizuno H; Miyawaki A Sci STKE; 2002 Mar; 2002(125):pl4. PubMed ID: 11917155 [TBL] [Abstract][Full Text] [Related]
13. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Marchant JS; Stutzmann GE; Leissring MA; LaFerla FM; Parker I Nat Biotechnol; 2001 Jul; 19(7):645-9. PubMed ID: 11433276 [TBL] [Abstract][Full Text] [Related]
14. Photoactivation of pa-GFP in 3D: optical tools for spatial confinement. Testa I; Garrè M; Parazzoli D; Barozzi S; Ponzanelli I; Mazza D; Faretta M; Diaspro A Eur Biophys J; 2008 Sep; 37(7):1219-27. PubMed ID: 18379772 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent labeling of proteins in living cells using the FKBP12 (F36V) tag. Robers M; Pinson P; Leong L; Batchelor RH; Gee KR; Machleidt T Cytometry A; 2009 Mar; 75(3):207-24. PubMed ID: 18837033 [TBL] [Abstract][Full Text] [Related]
16. Uniform total internal reflection fluorescence illumination enables live cell fluorescence resonance energy transfer microscopy. Lin J; Hoppe AD Microsc Microanal; 2013 Apr; 19(2):350-9. PubMed ID: 23472941 [TBL] [Abstract][Full Text] [Related]
17. Confocal/TEM overlay microscopy: a simple method for correlating confocal and electron microscopy of cells expressing GFP/YFP fusion proteins. Keene DR; Tufa SF; Lunstrum GP; Holden P; Horton WA Microsc Microanal; 2008 Aug; 14(4):342-8. PubMed ID: 18598569 [TBL] [Abstract][Full Text] [Related]
18. Reflection across plant cell boundaries in confocal laser scanning microscopy. Liu DY; Kuhlmey BT; Smith PM; Day DA; Faulkner CR; Overall RL J Microsc; 2008 Aug; 231(2):349-57. PubMed ID: 18778432 [TBL] [Abstract][Full Text] [Related]
19. Signal analysis of total internal reflection fluorescent speckle microscopy (TIR-FSM) and wide-field epi-fluorescence FSM of the actin cytoskeleton and focal adhesions in living cells. Adams MC; Matov A; Yarar D; Gupton SL; Danuser G; Waterman-Storer CM J Microsc; 2004 Nov; 216(Pt 2):138-52. PubMed ID: 15516225 [TBL] [Abstract][Full Text] [Related]
20. Two-photon activation and excitation properties of PA-GFP in the 720-920-nm region. Schneider M; Barozzi S; Testa I; Faretta M; Diaspro A Biophys J; 2005 Aug; 89(2):1346-52. PubMed ID: 15908572 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]