BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 18387042)

  • 1. Two-dimensional dopant profiling with low-energy SEM.
    Mika F; Frank L
    J Microsc; 2008 Apr; 230(Pt 1):76-83. PubMed ID: 18387042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-pass energy-filtered photoemission electron microscopy imaging of dopants in silicon.
    Hovorka M; Frank L; Valdaitsev D; Nepijko SA; Elmers HS; Schönhense G
    J Microsc; 2008 Apr; 230(Pt 1):42-7. PubMed ID: 18387038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative secondary electron energy filtering in a scanning electron microscope and its applications.
    Kazemian P; Mentink SA; Rodenburg C; Humphreys CJ
    Ultramicroscopy; 2007; 107(2-3):140-50. PubMed ID: 16872746
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of oxide overlayers on secondary electron dopant mapping.
    Dapor M; Jepson MA; Inkson BJ; Rodenburg C
    Microsc Microanal; 2009 Jun; 15(3):237-43. PubMed ID: 19460180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly reproducible secondary electron imaging under electron irradiation using high-pass energy filtering in low-voltage scanning electron microscopy.
    Tsurumi D; Hamada K; Kawasaki Y
    Microsc Microanal; 2012 Apr; 18(2):385-9. PubMed ID: 22364782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron holography study for two-dimensional dopant profile measurement with specimens prepared by backside ion milling.
    Yoo JH; Yang JM; Ulugbek S; Ahn CW; Hwang WJ; Park JK; Park CM; Hong SB; Kim JJ; Shindo D
    J Electron Microsc (Tokyo); 2008 Jan; 57(1):13-8. PubMed ID: 18175780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The injected-charge contrast mechanism in scanned imaging of doped semiconductors by very slow electrons.
    Frank L; Müllerová I
    Ultramicroscopy; 2005 Dec; 106(1):28-36. PubMed ID: 16054756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy-filtered imaging in a scanning electron microscope for dopant contrast in InP.
    Tsurumi D; Hamada K; Kawasaki Y
    J Electron Microsc (Tokyo); 2010 Aug; 59 Suppl 1():S183-7. PubMed ID: 20601354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unravelling new principles of site-selective doping contrast in the dual-beam focused ion beam/scanning electron microscope.
    Chee AKW
    Ultramicroscopy; 2020 Jun; 213():112947. PubMed ID: 32361280
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-energy STEM of multilayers and dopant profiles.
    Merli PG; Morandi V
    Microsc Microanal; 2005 Feb; 11(1):97-104. PubMed ID: 15683576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage and Dopant Concentration Measurements of Semiconductors using a Band-Pass Toroidal Energy Analyzer Inside a Scanning Electron Microscope.
    Srinivasan A; Khursheed A
    Microsc Microanal; 2015 Aug; 21(4):910-8. PubMed ID: 26223549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy selective scanning electron microscopy to reduce the effect of contamination layers on scanning electron microscope dopant mapping.
    Rodenburg C; Jepson MA; Bosch EG; Dapor M
    Ultramicroscopy; 2010 Aug; 110(9):1185-91. PubMed ID: 20471172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional quantitative mapping of arsenic in nanometer-scale silicon devices using STEM EELS-EDX spectroscopy.
    Servanton G; Pantel R; Juhel M; Bertin F
    Micron; 2009; 40(5-6):543-51. PubMed ID: 19414268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimized dopant imaging for GaN by a scanning electron microscopy.
    Zhang K; Ban CG; Yuan Y; Huang L
    J Microsc; 2023 Aug; 291(2):177-185. PubMed ID: 37229720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fermi level pinning characterisation on ammonium fluoride-treated surfaces of silicon by energy-filtered doping contrast in the scanning electron microscope.
    Chee AK
    Sci Rep; 2016 Aug; 6():32003. PubMed ID: 27576347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dopant profiling based on scanning electron and helium ion microscopy.
    Chee AKW; Boden SA
    Ultramicroscopy; 2016 Feb; 161():51-58. PubMed ID: 26624515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of an ion beam alignment system for real-time scanning tunneling microscope observation of dopant-ion irradiation.
    Kamioka T; Sato K; Kazama Y; Watanabe T; Ohdomari I
    Rev Sci Instrum; 2008 Jul; 79(7):073707. PubMed ID: 18681708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resolution limits of secondary electron dopant contrast in helium ion and scanning electron microscopy.
    Jepson M; Liu X; Bell D; Ferranti D; Inkson B; Rodenburg C
    Microsc Microanal; 2011 Aug; 17(4):637-42. PubMed ID: 21745435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Mg doping on GaN nanowires.
    Zhang D; Xue C; Zhuang H; Sun H; Cao Y; Huang Y; Wang Z; Wang Y
    Chemphyschem; 2009 Feb; 10(3):571-5. PubMed ID: 19142926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unveiling the chemical and morphological features of Sb-SnO2 nanocrystals by the combined use of high-resolution transmission electron microscopy and ab initio surface energy calculations.
    Stroppa DG; Montoro LA; Beltrán A; Conti TG; da Silva RO; Andrés J; Longo E; Leite ER; Ramirez AJ
    J Am Chem Soc; 2009 Oct; 131(40):14544-8. PubMed ID: 19807192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.