These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 18387049)

  • 1. A statistical approach for intensity loss compensation of confocal microscopy images.
    Gopinath S; Wen Q; Thakoor N; Luby-Phelps K; Gao JX
    J Microsc; 2008 Apr; 230(Pt 1):143-59. PubMed ID: 18387049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation and intensity estimation of microarray images using a gamma-t mixture model.
    Baek J; Son YS; McLachlan GJ
    Bioinformatics; 2007 Feb; 23(4):458-65. PubMed ID: 17166856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fully automated intensity compensation for confocal microscopic images.
    Wu HX; Ji L
    J Microsc; 2005 Oct; 220(Pt 1):9-19. PubMed ID: 16269059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive image-processing technique and effective visualization of confocal microscopy images.
    Sun Y; Rajwa B; Robinson JP
    Microsc Res Tech; 2004 Jun; 64(2):156-63. PubMed ID: 15352087
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive correction technique for 3D reconstruction of fluorescence microscopy images.
    Guan YQ; Cai YY; Zhang X; Lee YT; Opas M
    Microsc Res Tech; 2008 Feb; 71(2):146-57. PubMed ID: 17992693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methods for compensation of the light attenuation with depth of images captured by a confocal microscope.
    Capek M; Janácek J; Kubínová L
    Microsc Res Tech; 2006 Aug; 69(8):624-35. PubMed ID: 16741977
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intensity correction of fluorescent confocal laser scanning microscope images by mean-weight filtering.
    Lee SC; Bajcsy P
    J Microsc; 2006 Feb; 221(Pt 2):122-36. PubMed ID: 16499551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic seamless mosaicing of microscopic images: enhancing appearance with colour degradation compensation and wavelet-based blending.
    Hsu WY; Poon WF; Sun YN
    J Microsc; 2008 Sep; 231(3):408-18. PubMed ID: 18754995
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated compensation of light attenuation in confocal microscopy by exact histogram specification.
    Stanciu SG; Stanciu GA; Coltuc D
    Microsc Res Tech; 2010 Mar; 73(3):165-75. PubMed ID: 19725065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic thresholding of three-dimensional microvascular structures from confocal microscopy images.
    Smith CM; Cole Smith J; Williams SK; Rodriguez JJ; Hoying JB
    J Microsc; 2007 Mar; 225(Pt 3):244-57. PubMed ID: 17371447
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bayesian winner-take-all reconstruction of intermediate views from stereoscopic images.
    Mansouri AR; Konrad J
    IEEE Trans Image Process; 2000; 9(10):1710-22. PubMed ID: 18262910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of out-of-focus light intensity in confocal raman microscopy using optical preprocessing.
    Pelletier MJ
    Appl Spectrosc; 2009 Jun; 63(6):591-6. PubMed ID: 19531285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Attraction-repulsion expectation-maximization algorithm for image reconstruction and sensor field estimation.
    Hong H; Schonfeld D
    IEEE Trans Image Process; 2009 Sep; 18(9):2004-11. PubMed ID: 19502130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A procedure to determine the correct thickness of an object with confocal microscopy in case of refractive index mismatch.
    Kuypers LC; Decraemer WF; Dirckx JJ; Timmermans JP
    J Microsc; 2005 Apr; 218(Pt 1):68-78. PubMed ID: 15817065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Likelihood maximization approach to image registration.
    Zhu YM; Cochoff SM
    IEEE Trans Image Process; 2002; 11(12):1417-26. PubMed ID: 18249710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parameter estimation and tissue segmentation from multispectral MR images.
    Liang Z; Macfall JR; Harrington DP
    IEEE Trans Med Imaging; 1994; 13(3):441-9. PubMed ID: 18218519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of specimen thickness and composition in Al(x)Ga(1-x)N/GaN using high-angle annular dark field images.
    Rosenauer A; Gries K; Müller K; Pretorius A; Schowalter M; Avramescu A; Engl K; Lutgen S
    Ultramicroscopy; 2009 Aug; 109(9):1171-82. PubMed ID: 19497670
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative atomic resolution mapping using high-angle annular dark field scanning transmission electron microscopy.
    Van Aert S; Verbeeck J; Erni R; Bals S; Luysberg M; Van Dyck D; Van Tendeloo G
    Ultramicroscopy; 2009 Sep; 109(10):1236-44. PubMed ID: 19525069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shack-Hartmann wave front measurements in cortical tissue for deconvolution of large three-dimensional mosaic transmitted light brightfield micrographs.
    Oberlaender M; Broser PJ; Sakmann B; Hippler S
    J Microsc; 2009 Feb; 233(2):275-89. PubMed ID: 19220694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images.
    Bruzzone L; Prieto DF
    IEEE Trans Image Process; 2002; 11(4):452-66. PubMed ID: 18244646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.