These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 18387262)

  • 1. Foot control in incomplete SCI: distinction between paresis and dexterity.
    Wirth B; van Hedel H; Curt A
    Neurol Res; 2008 Feb; 30(1):52-60. PubMed ID: 18387262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ankle dexterity remains intact in patients with incomplete spinal cord injury in contrast to stroke patients.
    Wirth B; van Hedel HJ; Curt A
    Exp Brain Res; 2008 Nov; 191(3):353-61. PubMed ID: 18704382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ankle motor skill is intact in spinal cord injury, unlike stroke: implications for rehabilitation.
    van Hedel HJ; Wirth B; Curt A
    Neurology; 2010 Apr; 74(16):1271-8. PubMed ID: 20404308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voluntary ankle flexor activity and adaptive coactivation gain is decreased by spasticity during subacute spinal cord injury.
    Gómez-Soriano J; Castellote JM; Pérez-Rizo E; Esclarin A; Taylor JS
    Exp Neurol; 2010 Aug; 224(2):507-16. PubMed ID: 20580713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ankle dexterity is less impaired than muscle strength in incomplete spinal cord lesion.
    Wirth B; van Hedel HJ; Curt A
    J Neurol; 2008 Feb; 255(2):273-9. PubMed ID: 18204802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in corticospinal function and ankle motor control during recovery from incomplete spinal cord injury.
    Wirth B; Van Hedel HJ; Curt A
    J Neurotrauma; 2008 May; 25(5):467-78. PubMed ID: 18419251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensor reflexes in human spinal cord injury: activation by hip proprioceptors.
    Schmit BD; Benz EN
    Exp Brain Res; 2002 Aug; 145(4):520-7. PubMed ID: 12172664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrinsic and reflex stiffness in normal and spastic, spinal cord injured subjects.
    Mirbagheri MM; Barbeau H; Ladouceur M; Kearney RE
    Exp Brain Res; 2001 Dec; 141(4):446-59. PubMed ID: 11810139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ankle paresis in incomplete spinal cord injury: relation to corticospinal conductivity and ambulatory capacity.
    Wirth B; van Hedel HJ; Curt A
    J Clin Neurophysiol; 2008 Aug; 25(4):210-7. PubMed ID: 18677185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tendon reflexes for predicting movement recovery after acute spinal cord injury in humans.
    Calancie B; Molano MR; Broton JG
    Clin Neurophysiol; 2004 Oct; 115(10):2350-63. PubMed ID: 15351378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expansion of nociceptive withdrawal reflex receptive fields in spinal cord injured humans.
    Andersen OK; Finnerup NB; Spaich EG; Jensen TS; Arendt-Nielsen L
    Clin Neurophysiol; 2004 Dec; 115(12):2798-810. PubMed ID: 15546788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.
    Varoqui D; Niu X; Mirbagheri MM
    J Neuroeng Rehabil; 2014 Mar; 11():46. PubMed ID: 24684813
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abnormal cutaneous flexor reflex activity during controlled isometric plantarflexion in human spinal cord injury spasticity syndrome.
    Gómez-Soriano J; Bravo-Esteban E; Pérez-Rizo E; Ávila-Martín G; Galán-Arriero I; Simón-Martinez C; Taylor J
    Spinal Cord; 2016 Sep; 54(9):687-94. PubMed ID: 26902460
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Instrument validity and reliability of a choice response time test for subjects with incomplete spinal cord injury: relationship with function.
    Labruyère R; van Hedel HJ
    Arch Phys Med Rehabil; 2011 Sep; 92(9):1443-9. PubMed ID: 21878215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bilateral oscillatory hip movements induce windup of multijoint lower extremity spastic reflexes in chronic spinal cord injury.
    Onushko T; Hyngstrom A; Schmit BD
    J Neurophysiol; 2011 Oct; 106(4):1652-61. PubMed ID: 21753029
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent mechanisms for the reflex response to imposed ankle movement in chronic spinal cord injury.
    Schmit BD; Benz EN; Rymer WZ
    Exp Brain Res; 2002 Jul; 145(1):40-9. PubMed ID: 12070743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of a precision walking skill and the impact of proprioceptive deficits in people with motor-incomplete spinal cord injury.
    Chisholm AE; Qaiser T; Williams AMM; Eginyan G; Lam T
    J Neurophysiol; 2019 Mar; 121(3):1078-1084. PubMed ID: 30726165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of multijoint spastic reflexes of the legs during assisted bilateral hip oscillations in human spinal cord injury.
    Onushko T; Hyngstrom A; Schmit BD
    Arch Phys Med Rehabil; 2010 Aug; 91(8):1225-35. PubMed ID: 20684903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal reflexes in ankle flexor and extensor muscles after chronic central nervous system lesions and functional electrical stimulation.
    Thompson AK; Estabrooks KL; Chong S; Stein RB
    Neurorehabil Neural Repair; 2009 Feb; 23(2):133-42. PubMed ID: 19023139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticospinal Control of a Challenging Ankle Task in Incomplete Spinal Cord Injury.
    Cathomen A; Meier F; Lerch I; Killeen T; Zörner B; Curt A; Bolliger M
    J Neurotrauma; 2023 May; 40(9-10):952-964. PubMed ID: 36029211
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.