These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 18388278)

  • 21. Group II self-splicing introns in bacteria.
    Ferat JL; Michel F
    Nature; 1993 Jul; 364(6435):358-61. PubMed ID: 7687328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure of a tyrosyl-tRNA synthetase splicing factor bound to a group I intron RNA.
    Paukstelis PJ; Chen JH; Chase E; Lambowitz AM; Golden BL
    Nature; 2008 Jan; 451(7174):94-7. PubMed ID: 18172503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compaction of a bacterial group I ribozyme coincides with the assembly of core helices.
    Perez-Salas UA; Rangan P; Krueger S; Briber RM; Thirumalai D; Woodson SA
    Biochemistry; 2004 Feb; 43(6):1746-53. PubMed ID: 14769052
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characteristics of ligand recognition by a glmS self-cleaving ribozyme.
    Lim J; Grove BC; Roth A; Breaker RR
    Angew Chem Int Ed Engl; 2006 Oct; 45(40):6689-93. PubMed ID: 16986193
    [No Abstract]   [Full Text] [Related]  

  • 26. Visualizing group II intron dynamics between the first and second steps of splicing.
    Manigrasso J; Chillón I; Genna V; Vidossich P; Somarowthu S; Pyle AM; De Vivo M; Marcia M
    Nat Commun; 2020 Jun; 11(1):2837. PubMed ID: 32503992
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron.
    Golden BL; Podell ER; Gooding AR; Cech TR
    J Mol Biol; 1997 Aug; 270(5):711-23. PubMed ID: 9245599
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transposition and exon shuffling by group II intron RNA molecules in pieces.
    Hiller R; Hetzer M; Schweyen RJ; Mueller MW
    J Mol Biol; 2000 Mar; 297(2):301-8. PubMed ID: 10715202
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Time-resolved synchrotron X-ray "footprinting", a new approach to the study of nucleic acid structure and function: application to protein-DNA interactions and RNA folding.
    Sclavi B; Woodson S; Sullivan M; Chance MR; Brenowitz M
    J Mol Biol; 1997 Feb; 266(1):144-59. PubMed ID: 9054977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Folding of group II introns: a model system for large, multidomain RNAs?
    Pyle AM; Fedorova O; Waldsich C
    Trends Biochem Sci; 2007 Mar; 32(3):138-45. PubMed ID: 17289393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural evidence for a two-metal-ion mechanism of group I intron splicing.
    Stahley MR; Strobel SA
    Science; 2005 Sep; 309(5740):1587-90. PubMed ID: 16141079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression of shRNA using intron splicing.
    Noguchi K; Ishitu Y; Miyano-Kurosaki N; Takaku H
    Nucleic Acids Symp Ser (Oxf); 2007; (51):409-10. PubMed ID: 18029760
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Database for mobile group II introns.
    Dai L; Toor N; Olson R; Keeping A; Zimmerly S
    Nucleic Acids Res; 2003 Jan; 31(1):424-6. PubMed ID: 12520040
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Structure, function and molecular evolution of group I intron ribozyme].
    Ikawa Y; Inoue T
    Tanpakushitsu Kakusan Koso; 2001 Apr; 46(5):644-51. PubMed ID: 11296362
    [No Abstract]   [Full Text] [Related]  

  • 39. Trans-splicing reactions by ribozymes.
    Jones JT; Lee SW; Sullenger BA
    Methods Mol Biol; 1997; 74():341-8. PubMed ID: 9204448
    [No Abstract]   [Full Text] [Related]  

  • 40. Analysis of the CYT-18 protein binding site at the junction of stacked helices in a group I intron RNA by quantitative binding assays and in vitro selection.
    Saldanha R; Ellington A; Lambowitz AM
    J Mol Biol; 1996 Aug; 261(1):23-42. PubMed ID: 8760500
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.