These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

361 related articles for article (PubMed ID: 18388956)

  • 1. A protocol for expression of foreign genes in chloroplasts.
    Verma D; Samson NP; Koya V; Daniell H
    Nat Protoc; 2008; 3(4):739-58. PubMed ID: 18388956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of biopharmaceuticals and vaccines in plants via the chloroplast genome.
    Daniell H
    Biotechnol J; 2006 Oct; 1(10):1071-9. PubMed ID: 17004305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chloroplast-derived vaccine antigens and biopharmaceuticals: protocols for expression, purification, or oral delivery and functional evaluation.
    Singh ND; Ding Y; Daniell H
    Methods Mol Biol; 2009; 483():163-92. PubMed ID: 19183899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plastid transformation as an expression tool for plant-derived biopharmaceuticals.
    Scotti N; Cardi T
    Methods Mol Biol; 2012; 847():451-66. PubMed ID: 22351028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chloroplast genetic engineering via organogenesis or somatic embryogenesis.
    Dhingra A; Daniell H
    Methods Mol Biol; 2006; 323():245-62. PubMed ID: 16739583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of marker-free plastid transformants using a transiently cointegrated selection gene.
    Klaus SM; Huang FC; Golds TJ; Koop HU
    Nat Biotechnol; 2004 Feb; 22(2):225-9. PubMed ID: 14730316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering the chloroplast genome for hyperexpression of human therapeutic proteins and vaccine antigens.
    Kumar S; Daniell H
    Methods Mol Biol; 2004; 267():365-83. PubMed ID: 15269437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of the expression of the HIV fusion inhibitor cyanovirin-N from the tobacco plastid genome.
    Elghabi Z; Karcher D; Zhou F; Ruf S; Bock R
    Plant Biotechnol J; 2011 Jun; 9(5):599-608. PubMed ID: 21309998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Advances in chloroplast engineering.
    Wang HH; Yin WB; Hu ZM
    J Genet Genomics; 2009 Jul; 36(7):387-98. PubMed ID: 19631913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic.
    Oey M; Lohse M; Kreikemeyer B; Bock R
    Plant J; 2009 Feb; 57(3):436-45. PubMed ID: 18939966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taming plastids for a green future.
    Bock R; Khan MS
    Trends Biotechnol; 2004 Jun; 22(6):311-8. PubMed ID: 15158061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection.
    Daniell H; Muthukumar B; Lee SB
    Curr Genet; 2001 Apr; 39(2):109-16. PubMed ID: 11405095
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chloroplast-derived vaccine antigens and other therapeutic proteins.
    Daniell H; Chebolu S; Kumar S; Singleton M; Falconer R
    Vaccine; 2005 Mar; 23(15):1779-83. PubMed ID: 15734040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas.
    Michelet L; Lefebvre-Legendre L; Burr SE; Rochaix JD; Goldschmidt-Clermont M
    Plant Biotechnol J; 2011 Jun; 9(5):565-74. PubMed ID: 20809927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transgenic chloroplasts are efficient sites for high-yield production of the vaccinia virus envelope protein A27L in plant cellsdagger.
    Rigano MM; Manna C; Giulini A; Pedrazzini E; Capobianchi M; Castilletti C; Di Caro A; Ippolito G; Beggio P; De Giuli Morghen C; Monti L; Vitale A; Cardi T
    Plant Biotechnol J; 2009 Aug; 7(6):577-91. PubMed ID: 19508274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chloroplasts as expression platforms for plant-produced vaccines.
    Cardi T; Lenzi P; Maliga P
    Expert Rev Vaccines; 2010 Aug; 9(8):893-911. PubMed ID: 20673012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-yield production of a human therapeutic protein in tobacco chloroplasts.
    Staub JM; Garcia B; Graves J; Hajdukiewicz PT; Hunter P; Nehra N; Paradkar V; Schlittler M; Carroll JA; Spatola L; Ward D; Ye G; Russell DA
    Nat Biotechnol; 2000 Mar; 18(3):333-8. PubMed ID: 10700152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Chloroplast genetic engineering: a new approach in plant biotechnology].
    Su T; Zhan YG; Han M; Hao AP
    Sheng Wu Gong Cheng Xue Bao; 2005 Jul; 21(4):674-80. PubMed ID: 16176114
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human papillomavirus L1 protein expressed in tobacco chloroplasts self-assembles into virus-like particles that are highly immunogenic.
    Fernández-San Millán A; Ortigosa SM; Hervás-Stubbs S; Corral-Martínez P; Seguí-Simarro JM; Gaétan J; Coursaget P; Veramendi J
    Plant Biotechnol J; 2008 Jun; 6(5):427-41. PubMed ID: 18422886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a tobacco master line to improve Rubisco engineering in chloroplasts.
    Whitney SM; Sharwood RE
    J Exp Bot; 2008; 59(7):1909-21. PubMed ID: 18250079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.