These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 18388973)

  • 1. Repeated batch cultivation of the hydrocarbon-degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam.
    Ueno R; Wada S; Urano N
    Can J Microbiol; 2008 Jan; 54(1):66-70. PubMed ID: 18388973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodococcus sp. F92 immobilized on polyurethane foam shows ability to degrade various petroleum products.
    Quek E; Ting YP; Tan HM
    Bioresour Technol; 2006 Jan; 97(1):32-8. PubMed ID: 16154500
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of heterotrophic culture conditions for n-alkane utilization and phylogenetic position based on the 18S rDNA sequence of a thermotolerant Prototheca zopfii strain.
    Ueno R; Urano N; Wada S; Kimura S
    J Biosci Bioeng; 2002; 94(2):160-5. PubMed ID: 16233286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of hydrocarbon contamination by immobilized bacterial cells.
    Rahman RN; Ghaza FM; Salleh AB; Basri M
    J Microbiol; 2006 Jun; 44(3):354-9. PubMed ID: 16820766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradation of p-cresol by immobilized cells of Bacillus sp. strain PHN 1.
    Tallur PN; Megadi VB; Ninnekar HZ
    Biodegradation; 2009 Feb; 20(1):79-83. PubMed ID: 18642119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam.
    Zheng C; Zhou J; Wang J; Qu B; Wang J; Lu H; Zhao H
    J Hazard Mater; 2009 Aug; 168(1):298-303. PubMed ID: 19303212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprocess for solubilization of rock phosphate on starch based medium by Paecilomyces marquandii immobilized on polyurethane foam.
    Ahuja A; D'Souza SF
    Appl Biochem Biotechnol; 2009 Jan; 152(1):1-5. PubMed ID: 18785017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of petroleum by an alga, Prototheca zopfii.
    Walker JD; Colwell RR; Petrakis L
    Appl Microbiol; 1975 Jul; 30(1):79-81. PubMed ID: 1147621
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of microorganism-immobilized polyurethane foams to absorb and degrade oil on water surface.
    Oh YS; Maeng J; Kim SJ
    Appl Microbiol Biotechnol; 2000 Sep; 54(3):418-23. PubMed ID: 11030581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achlorophyllous alga Prototheca zopfii oxidizes n-alkanes with different carbon-chain lengths through a unique subterminal oxidation pathway.
    Takimura Y; Sakuradani E; Natsume Y; Miyake T; Ogawa J; Shimizu S
    J Biosci Bioeng; 2014 Mar; 117(3):275-7. PubMed ID: 24099955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Prototheca isolates on n-hexadecane and mixed-hydrocarbon substrate.
    Walker JD; Pore RS
    Appl Environ Microbiol; 1978 Apr; 35(4):694-7. PubMed ID: 565616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced degradation of naphthalene by immobilization of Pseudomonas sp. strain NGK1 in polyurethane foam.
    Manohar S; Kim CK; Karegoudar TB
    Appl Microbiol Biotechnol; 2001 Apr; 55(3):311-6. PubMed ID: 11341312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation pattern of hydrocarbons from a fuel oil-type complex residue by an emulsifier-producing microbial consortium.
    Nievas ML; Commendatore MG; Esteves JL; Bucalá V
    J Hazard Mater; 2008 Jun; 154(1-3):96-104. PubMed ID: 17997031
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria.
    McKew BA; Coulon F; Yakimov MM; Denaro R; Genovese M; Smith CJ; Osborn AM; Timmis KN; McGenity TJ
    Environ Microbiol; 2007 Jun; 9(6):1562-71. PubMed ID: 17504493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay.
    Kubota K; Koma D; Matsumiya Y; Chung SY; Kubo M
    Biodegradation; 2008 Sep; 19(5):749-57. PubMed ID: 18283542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visualization of sporopollenin-containing pathogenic green micro-alga Prototheca wickerhamii by fluorescent in situ hybridization (FISH).
    Ueno R
    Can J Microbiol; 2009 Apr; 55(4):465-72. PubMed ID: 19396247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of dimethylphthalate by cells of Bacillus sp. immobilized in calcium alginate and polyurethane foam.
    Niazi JH; Karegoudar TB
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2001; 36(6):1135-44. PubMed ID: 11501311
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Petroleum oil removal by immobilized bacterial cells on polyurethane foam under different temperature conditions.
    Alessandrello MJ; Juárez Tomás MS; Raimondo EE; Vullo DL; Ferrero MA
    Mar Pollut Bull; 2017 Sep; 122(1-2):156-160. PubMed ID: 28641883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of formaldehyde in anaerobic sequencing batch biofilm reactor (ASBBR).
    Pereira NS; Zaiat M
    J Hazard Mater; 2009 Apr; 163(2-3):777-82. PubMed ID: 18715712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills.
    Mittal A; Singh P
    Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.