BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 18389727)

  • 1. Heavy metals resistant plasmid-mediated utilization of solar by Pseudomonas aeruginosa AA301.
    Abo-Amer AE; Mohamed RM
    Roum Arch Microbiol Immunol; 2006; 65(3-4):113-9. PubMed ID: 18389727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation, characterization of heavy metal resistant strain of Pseudomonas aeruginosa isolated from polluted sites in Assiut city, Egypt.
    Hassan SH; Abskharon RN; El-Rab SM; Shoreit AA
    J Basic Microbiol; 2008 Jun; 48(3):168-76. PubMed ID: 18506899
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Some evidences for the involvement of plasmid in diuron herbicide degradation.
    El-Deeb BA; Ali AM; Ali KA
    Acta Microbiol Immunol Hung; 2000; 47(1):63-73. PubMed ID: 10735191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plasmid-mediated biodegradation of the anionic surfactant sodium dodecyl sulphate, by Pseudomonas aeruginosa S7.
    Yeldho D; Rebello S; Jisha MS
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):110-3. PubMed ID: 21152890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Correlation between multiple antibiotic resistance and heavy-metal tolerance among some E.coli strains isolated from polluted waters].
    Lazăr V; Cernat R; Balotescu C; Cotar A; Coipan E; Cojocaru C
    Bacteriol Virusol Parazitol Epidemiol; 2002; 47(3-4):155-60. PubMed ID: 15085605
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative biodegradation examination of Pseudomonas aeruginosa (ATCC 27853) and other oil degraders on hydrocarbon contaminated soil.
    Szoboszlay S; Atzél B; Kriszt B
    Commun Agric Appl Biol Sci; 2003; 68(2 Pt A):207-10. PubMed ID: 15296164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A strain of Pseudomonas aeruginosa growing on petroleum hydrocarbons].
    Porits AL; Boronin AM; Skriabin GK
    Prikl Biokhim Mikrobiol; 1983; 19(3):347-52. PubMed ID: 6410371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential utilization of pyrene as the sole source of carbon by Bacillus subtilis and Pseudomonas aeruginosa strains: role of biosurfactants in enhancing bioavailability.
    Das K; Mukherjee AK
    J Appl Microbiol; 2007 Jan; 102(1):195-203. PubMed ID: 17184335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community changes in diesel-oil-contaminated soil microcosms biostimulated with Luria-Bertani medium or bioaugmented with a petroleum-degrading bacterium, Pseudomonas aeruginosa strain WatG.
    Ueno A; Ito Y; Yamamoto Y; Yumoto I; Okuyama H
    J Basic Microbiol; 2006; 46(4):310-7. PubMed ID: 16847835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosorption of chromium, copper, manganese and zinc by Pseudomonas aeruginosa AT18 isolated from a site contaminated with petroleum.
    Pérez Silva RM; Abalos Rodríguez A; Gómez Montes De Oca JM; Cantero Moreno D
    Bioresour Technol; 2009 Feb; 100(4):1533-8. PubMed ID: 18951017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Mechanism of heavy-metal tolerance in Pseudomonas aeruginosa ZGKD2].
    Zhang YX; Wang J; Chai TY; Zhang Q; Liu JG; Li X; Bai ZQ; Su ZJ
    Huan Jing Ke Xue; 2012 Oct; 33(10):3613-9. PubMed ID: 23233996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of heavy-metal resistant microbes from roadside soil and phylloplane.
    Mohamed RM; Abo-Amer AE
    J Basic Microbiol; 2012 Feb; 52(1):53-65. PubMed ID: 22435113
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids.
    Zhang GL; Wu YT; Qian XP; Meng Q
    J Zhejiang Univ Sci B; 2005 Aug; 6(8):725-30. PubMed ID: 16052704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Metal resistance of gram-negative bacteria isolated from soil and waste waters of industrial regions].
    Anisimova LA; Siunova TV; Boronin AM
    Mikrobiologiia; 1993; 62(5):843-8. PubMed ID: 8302206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills.
    Mittal A; Singh P
    Indian J Exp Biol; 2009 Sep; 47(9):760-5. PubMed ID: 19957890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradation of petroleum hydrocarbons in the presence of nickel and cobalt.
    Oyetibo GO; Ilori MO; Obayori OS; Amund OO
    J Basic Microbiol; 2013 Nov; 53(11):917-27. PubMed ID: 23457074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of heavy metals on the oil products biodegradation process.
    Zukauskaite A; Jakubauskaite V; Belous O; Ambrazaitiene D; Stasiskiene Z
    Waste Manag Res; 2008 Dec; 26(6):500-7. PubMed ID: 19039065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran.
    Lotfabad TB; Shourian M; Roostaazad R; Najafabadi AR; Adelzadeh MR; Noghabi KA
    Colloids Surf B Biointerfaces; 2009 Mar; 69(2):183-93. PubMed ID: 19131218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of titanium ion and resistance encoding plasmid of Pseudomonas aeruginosa ATCC 10145.
    Park SM; Kim HS; Yu TS
    J Microbiol; 2006 Jun; 44(3):255-62. PubMed ID: 16820754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenol-degrading denitrifying bacteria in wastewater sediments.
    Tong TT; Błaszczyk M; Przytocka-Jusiak M; Mycielski R
    Acta Microbiol Pol; 1998; 47(2):203-11. PubMed ID: 9839379
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.