These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 18390340)

  • 1. The dependence of spectral impedance on disc microelectrode radius.
    Ahuja AK; Behrend MR; Whalen JJ; Humayun MS; Weiland JD
    IEEE Trans Biomed Eng; 2008 Apr; 55(4):1457-60. PubMed ID: 18390340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of nonplanar microelectrode array circuits for use in arthroscopic diagnosis of cartilage diseases.
    Quenneville E; Binette JS; Garon M; Légaré A; Meunier M; Buschmann MD
    IEEE Trans Biomed Eng; 2004 Dec; 51(12):2164-73. PubMed ID: 15605864
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impedance scaling for gold and platinum microelectrodes.
    Fan B; Wolfrum B; Robinson JT
    J Neural Eng; 2021 Sep; 18(5):. PubMed ID: 34433150
    [No Abstract]   [Full Text] [Related]  

  • 5. Impedance characterization and modeling of electrodes for biomedical applications.
    Franks W; Schenker I; Schmutz P; Hierlemann A
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1295-302. PubMed ID: 16041993
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage pulses change neural interface properties and improve unit recordings with chronically implanted microelectrodes.
    Otto KJ; Johnson MD; Kipke DR
    IEEE Trans Biomed Eng; 2006 Feb; 53(2):333-40. PubMed ID: 16485763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical characteristics of microelectrode designed for electrical stimulation.
    Cui H; Xie X; Xu S; Chan LLH; Hu Y
    Biomed Eng Online; 2019 Aug; 18(1):86. PubMed ID: 31370902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the electrode-electrolyte interface for recording and stimulating electrodes.
    Troy JB; Cantrell DR; Taflove A; Ruoff RS
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():879-81. PubMed ID: 17945606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical cell impedance spectral mesoscopic model applied to experimental data of variable size microelectrodes.
    Buchini Labayen AC; Bellotti MI; Bast W; Bonetto FJ
    Phys Rev E; 2022 Apr; 105(4-1):044401. PubMed ID: 35590599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs.
    Sun T; Green NG; Gawad S; Morgan H
    IET Nanobiotechnol; 2007 Oct; 1(5):69-79. PubMed ID: 17764376
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impedance characterization of microarray recording electrodes in vitro.
    Merrill DR; Tresco PA
    IEEE Trans Biomed Eng; 2005 Nov; 52(11):1960-5. PubMed ID: 16285400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au Hierarchical Nanostructure-Based Surface Modification of Microelectrodes for Improved Neural Signal Recording.
    Woo H; Kim S; Nam H; Choi W; Shin K; Kim K; Yoon S; Kim GH; Kim J; Lim G
    Anal Chem; 2021 Aug; 93(34):11765-11774. PubMed ID: 34387479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning electrode impedance for the electrical recording of biopotentials.
    Fontes MA; de Beeck M; Van Hoof C; Neves HP
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1812-5. PubMed ID: 21095939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An electrical model of the cell-electrode interface for high-density microelectrode arrays.
    Joye N; Schmid A; Leblebici Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():559-62. PubMed ID: 19162717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous measurement of nonlinearity and electrochemical impedance for protein sensing using two-tone excitation.
    Daniels JS; Anderson EP; Lee TH; Pourmand N
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5753-6. PubMed ID: 19164024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A time domain finite element model of extracellular neural stimulation predicts that non-rectangular stimulus waveforms may offer safety benefits.
    Cantrell DR; Troy JB
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():2768-71. PubMed ID: 19163279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Honeycomb-Patterned Graphene Microelectrodes: A Promising Approach for Safe and Effective Retinal Stimulation Based on Electro-Thermo-Mechanical Modeling and Simulation.
    Asghar SA; Mahadevappa M
    IEEE Trans Nanobioscience; 2024 Apr; 23(2):262-271. PubMed ID: 37747869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of microelectrode design for cortical recording based on thermal noise considerations.
    Lempka SF; Johnson MD; Barnett DW; Moffitt MA; Otto KJ; Kipke DR; McIntyre CC
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3361-4. PubMed ID: 17947023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A 64-channel ASIC for in-vitro simultaneous recording and stimulation of neurons using microelectrode arrays.
    Billoint O; Rostaing JP; Charvet G; Yvert B
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():6070-3. PubMed ID: 18003399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The noise and impedance of microelectrodes.
    Mierzejewski M; Steins H; Kshirsagar P; Jones PD
    J Neural Eng; 2020 Oct; 17(5):052001. PubMed ID: 33055360
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.