BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18390572)

  • 21. Structure of an archaeal TYW1, the enzyme catalyzing the second step of wye-base biosynthesis.
    Goto-Ito S; Ishii R; Ito T; Shibata R; Fusatomi E; Sekine SI; Bessho Y; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2007 Oct; 63(Pt 10):1059-68. PubMed ID: 17881823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis for the subunit assembly of the primase from an archaeon Pyrococcus horikoshii.
    Ito N; Matsui I; Matsui E
    FEBS J; 2007 Mar; 274(5):1340-51. PubMed ID: 17286576
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A second novel dye-linked L-proline dehydrogenase complex is present in the hyperthermophilic archaeon Pyrococcus horikoshii OT-3.
    Kawakami R; Sakuraba H; Tsuge H; Goda S; Katunuma N; Ohshima T
    FEBS J; 2005 Aug; 272(16):4044-54. PubMed ID: 16098188
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystallization and preliminary X-ray analysis of hyperthermophilic L-threonine dehydrogenase from the archaeon Pyrococcus horikoshii.
    Higashi N; Matsuura T; Nakagawa A; Ishikawa K
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Apr; 61(Pt 4):432-4. PubMed ID: 16511061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of a TET-like aminopeptidase complex from the hyperthermophilic archaeon Pyrococcus horikoshii.
    Durá MA; Receveur-Brechot V; Andrieu JP; Ebel C; Schoehn G; Roussel A; Franzetti B
    Biochemistry; 2005 Mar; 44(9):3477-86. PubMed ID: 15736957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proton transfer in benzyl alcohol dehydrogenase during catalysis: alternate proton-relay routes.
    Inoue J; Tomioka N; Itai A; Harayama S
    Biochemistry; 1998 Mar; 37(10):3305-11. PubMed ID: 9521650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domain topology of the DNA polymerase D complex from a hyperthermophilic archaeon Pyrococcus horikoshii.
    Tang XF; Shen Y; Matsui E; Matsui I
    Biochemistry; 2004 Sep; 43(37):11818-27. PubMed ID: 15362867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of the AlaX-M trans-editing enzyme from Pyrococcus horikoshii.
    Fukunaga R; Yokoyama S
    Acta Crystallogr D Biol Crystallogr; 2007 Mar; 63(Pt 3):390-400. PubMed ID: 17327676
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase.
    LeBrun LA; Park DH; Ramaswamy S; Plapp BV
    Biochemistry; 2004 Mar; 43(11):3014-26. PubMed ID: 15023053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enzymatic mechanism of low-activity mouse alcohol dehydrogenase 2.
    Strömberg P; Svensson S; Berst KB; Plapp BV; Höög JO
    Biochemistry; 2004 Feb; 43(5):1323-8. PubMed ID: 14756569
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Crystal structures and catalytic mechanism of the Arabidopsis cinnamyl alcohol dehydrogenases AtCAD5 and AtCAD4.
    Youn B; Camacho R; Moinuddin SG; Lee C; Davin LB; Lewis NG; Kang C
    Org Biomol Chem; 2006 May; 4(9):1687-97. PubMed ID: 16633561
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of active center in hyperthermophilic cellulase from Pyrococcus horikoshii.
    Kang HJ; Ishikawa K
    J Microbiol Biotechnol; 2007 Aug; 17(8):1249-53. PubMed ID: 18051592
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly selective L-threonine 3-dehydrogenase from Cupriavidus necator and its use in determination of L-threonine.
    Ueatrongchit T; Asano Y
    Anal Biochem; 2011 Mar; 410(1):44-56. PubMed ID: 21073854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aromatic residues located close to the active center are essential for the catalytic reaction of flap endonuclease-1 from hyperthermophilic archaeon Pyrococcus horikoshii.
    Matsui E; Abe J; Yokoyama H; Matsui I
    J Biol Chem; 2004 Apr; 279(16):16687-96. PubMed ID: 14742430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action.
    Bansal S; Srivastava A; Mukherjee G; Pandey R; Verma AK; Mishra P; Kundu B
    FASEB J; 2012 Mar; 26(3):1161-71. PubMed ID: 22166247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Observation of a calcium-binding site in the gamma-class carbonic anhydrase from Pyrococcus horikoshii.
    Jeyakanthan J; Rangarajan S; Mridula P; Kanaujia SP; Shiro Y; Kuramitsu S; Yokoyama S; Sekar K
    Acta Crystallogr D Biol Crystallogr; 2008 Oct; 64(Pt 10):1012-9. PubMed ID: 18931408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Cloning, expression and biochemical characterization of a novel diacetylchitobiose deacetylase from the hyperthermophilic archaeon Pyrococcus horikoshii].
    Liu B; Ni JF; Shen YL
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):255-8. PubMed ID: 16736587
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crystal structures of type IIIH NAD-dependent D-3-phosphoglycerate dehydrogenase from two thermophiles.
    Kumar SM; Pampa KJ; Manjula M; Hemantha Kumar G; Kunishima N; Lokanath NK
    Biochem Biophys Res Commun; 2014 Aug; 451(1):126-30. PubMed ID: 25065739
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improvement of the enzymatic activity of the hyperthermophilic cellulase from Pyrococcus horikoshii.
    Kang HJ; Uegaki K; Fukada H; Ishikawa K
    Extremophiles; 2007 Mar; 11(2):251-6. PubMed ID: 17072684
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biochemical and structural characterization of the hypoxanthine-guanine-xanthine phosphoribosyltransferase from Pyrococcus horikoshii.
    de Souza Dantas D; Ramos Dos Santos C; Guimarães Pereira GA; Medrano FJ
    Biochim Biophys Acta; 2008 Jun; 1784(6):953-60. PubMed ID: 18405676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.