These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 18390576)
1. Using support vector machine combined with auto covariance to predict protein-protein interactions from protein sequences. Guo Y; Yu L; Wen Z; Li M Nucleic Acids Res; 2008 May; 36(9):3025-30. PubMed ID: 18390576 [TBL] [Abstract][Full Text] [Related]
2. RVMAB: Using the Relevance Vector Machine Model Combined with Average Blocks to Predict the Interactions of Proteins from Protein Sequences. An JY; You ZH; Meng FR; Xu SJ; Wang Y Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27213337 [TBL] [Abstract][Full Text] [Related]
3. Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. You ZH; Zhu L; Zheng CH; Yu HJ; Deng SP; Ji Z BMC Bioinformatics; 2014; 15 Suppl 15(Suppl 15):S9. PubMed ID: 25474679 [TBL] [Abstract][Full Text] [Related]
4. Sequence-based prediction of protein-protein interactions using weighted sparse representation model combined with global encoding. Huang YA; You ZH; Chen X; Chan K; Luo X BMC Bioinformatics; 2016 Apr; 17(1):184. PubMed ID: 27112932 [TBL] [Abstract][Full Text] [Related]
5. Prediction of protein-protein interactions from protein sequence using local descriptors. Yang L; Xia JF; Gui J Protein Pept Lett; 2010 Sep; 17(9):1085-90. PubMed ID: 20509850 [TBL] [Abstract][Full Text] [Related]
6. Accurate prediction of protein-protein interactions by integrating potential evolutionary information embedded in PSSM profile and discriminative vector machine classifier. Li ZW; You ZH; Chen X; Li LP; Huang DS; Yan GY; Nie R; Huang YA Oncotarget; 2017 Apr; 8(14):23638-23649. PubMed ID: 28423569 [TBL] [Abstract][Full Text] [Related]
7. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences. Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483 [TBL] [Abstract][Full Text] [Related]
8. Predicting Protein-Protein Interactions via Random Ferns with Evolutionary Matrix Representation. Li Y; Wang Z; You ZH; Li LP; Hu X Comput Math Methods Med; 2022; 2022():7191684. PubMed ID: 35242211 [TBL] [Abstract][Full Text] [Related]
9. Protein-Protein Interactions Prediction Using a Novel Local Conjoint Triad Descriptor of Amino Acid Sequences. Wang J; Zhang L; Jia L; Ren Y; Yu G Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29117139 [TBL] [Abstract][Full Text] [Related]
10. Improved protein-protein interactions prediction via weighted sparse representation model combining continuous wavelet descriptor and PseAA composition. Huang YA; You ZH; Chen X; Yan GY BMC Syst Biol; 2016 Dec; 10(Suppl 4):120. PubMed ID: 28155718 [TBL] [Abstract][Full Text] [Related]
11. Predicting protein-protein interactions by fusing various Chou's pseudo components and using wavelet denoising approach. Tian B; Wu X; Chen C; Qiu W; Ma Q; Yu B J Theor Biol; 2019 Feb; 462():329-346. PubMed ID: 30452960 [TBL] [Abstract][Full Text] [Related]
12. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model. An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983 [TBL] [Abstract][Full Text] [Related]
13. Predicting protein-protein interactions from sequence using correlation coefficient and high-quality interaction dataset. Shi MG; Xia JF; Li XL; Huang DS Amino Acids; 2010 Mar; 38(3):891-9. PubMed ID: 19387790 [TBL] [Abstract][Full Text] [Related]
14. Predicting protein-protein interactions based only on sequences information. Shen J; Zhang J; Luo X; Zhu W; Yu K; Chen K; Li Y; Jiang H Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4337-41. PubMed ID: 17360525 [TBL] [Abstract][Full Text] [Related]
15. Predicting protein-protein interactions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest. You ZH; Chan KC; Hu P PLoS One; 2015; 10(5):e0125811. PubMed ID: 25946106 [TBL] [Abstract][Full Text] [Related]
16. Two multi-classification strategies used on SVM to predict protein structural classes by using auto covariance. Wu J; Li YZ; Li ML; Yu LZ Interdiscip Sci; 2009 Dec; 1(4):315-9. PubMed ID: 20640811 [TBL] [Abstract][Full Text] [Related]
17. Predicting protein-protein interactions using high-quality non-interacting pairs. Zhang L; Yu G; Guo M; Wang J BMC Bioinformatics; 2018 Dec; 19(Suppl 19):525. PubMed ID: 30598096 [TBL] [Abstract][Full Text] [Related]
18. Using Weighted Sparse Representation Model Combined with Discrete Cosine Transformation to Predict Protein-Protein Interactions from Protein Sequence. Huang YA; You ZH; Gao X; Wong L; Wang L Biomed Res Int; 2015; 2015():902198. PubMed ID: 26634213 [TBL] [Abstract][Full Text] [Related]
19. Predicting protein-protein interactions by combing various sequence- derived features into the general form of Chou's Pseudo amino acid composition. Zhao XW; Ma ZQ; Yin MH Protein Pept Lett; 2012 May; 19(5):492-500. PubMed ID: 22486644 [TBL] [Abstract][Full Text] [Related]
20. Prediction of protein-protein interactions based on PseAA composition and hybrid feature selection. Liu L; Cai Y; Lu W; Feng K; Peng C; Niu B Biochem Biophys Res Commun; 2009 Mar; 380(2):318-22. PubMed ID: 19171120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]