BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 18390597)

  • 1. Single-molecule force spectroscopy reveals a stepwise unfolding of Caenorhabditis elegans giant protein kinase domains.
    Greene DN; Garcia T; Sutton RB; Gernert KM; Benian GM; Oberhauser AF
    Biophys J; 2008 Aug; 95(3):1360-70. PubMed ID: 18390597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanoenzymatics of titin kinase.
    Puchner EM; Alexandrovich A; Kho AL; Hensen U; Schäfer LV; Brandmeier B; Gräter F; Grubmüller H; Gaub HE; Gautel M
    Proc Natl Acad Sci U S A; 2008 Sep; 105(36):13385-90. PubMed ID: 18765796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanically induced titin kinase activation studied by force-probe molecular dynamics simulations.
    Gräter F; Shen J; Jiang H; Gautel M; Grubmüller H
    Biophys J; 2005 Feb; 88(2):790-804. PubMed ID: 15531631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an N-terminal inhibitory extension as the primary mechanosensory regulator of twitchin kinase.
    von Castelmur E; Strümpfer J; Franke B; Bogomolovas J; Barbieri S; Qadota H; Konarev PV; Svergun DI; Labeit S; Benian GM; Schulten K; Mayans O
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13608-13. PubMed ID: 22869697
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular origin of the hierarchical elasticity of titin: simulation, experiment, and theory.
    Hsin J; Strümpfer J; Lee EH; Schulten K
    Annu Rev Biophys; 2011; 40():187-203. PubMed ID: 21332356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrin domains lose cooperativity in forced unfolding.
    Randles LG; Rounsevell RW; Clarke J
    Biophys J; 2007 Jan; 92(2):571-7. PubMed ID: 17085494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational changes in twitchin kinase in vivo revealed by FRET imaging of freely moving
    Porto D; Matsunaga Y; Franke B; Williams RM; Qadota H; Mayans O; Benian GM; Lu H
    Elife; 2021 Sep; 10():. PubMed ID: 34569929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations.
    Best RB; Fowler SB; Herrera JL; Steward A; Paci E; Clarke J
    J Mol Biol; 2003 Jul; 330(4):867-77. PubMed ID: 12850153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model for stretching and unfolding the giant multidomain muscle protein using single-molecule force spectroscopy.
    Staple DB; Payne SH; Reddin AL; Kreuzer HJ
    Phys Rev Lett; 2008 Dec; 101(24):248301. PubMed ID: 19113678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unfolding forces of titin and fibronectin domains directly measured by AFM.
    Rief M; Gautel M; Gaub HE
    Adv Exp Med Biol; 2000; 481():129-36; discussion 137-41. PubMed ID: 10987070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical stability and differentially conserved physical-chemical properties of titin Ig-domains.
    Garcia TI; Oberhauser AF; Braun W
    Proteins; 2009 May; 75(3):706-18. PubMed ID: 19003986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the conformation-regulated function of titin kinase by mechanical pump and probe experiments with single molecules.
    Puchner EM; Gaub HE
    Angew Chem Int Ed Engl; 2010 Feb; 49(6):1147-50. PubMed ID: 20077447
    [No Abstract]   [Full Text] [Related]  

  • 14. Molecular basis of passive stress relaxation in human soleus fibers: assessment of the role of immunoglobulin-like domain unfolding.
    Trombitás K; Wu Y; McNabb M; Greaser M; Kellermayer MS; Labeit S; Granzier H
    Biophys J; 2003 Nov; 85(5):3142-53. PubMed ID: 14581214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Titins in C.elegans with unusual features: coiled-coil domains, novel regulation of kinase activity and two new possible elastic regions.
    Flaherty DB; Gernert KM; Shmeleva N; Tang X; Mercer KB; Borodovsky M; Benian GM
    J Mol Biol; 2002 Oct; 323(3):533-49. PubMed ID: 12381307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A conditional gating mechanism assures the integrity of the molecular force-sensor titin kinase.
    Stahl SW; Puchner EM; Alexandrovich A; Gautel M; Gaub HE
    Biophys J; 2011 Oct; 101(8):1978-86. PubMed ID: 22004752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tertiary and secondary structure elasticity of a six-Ig titin chain.
    Lee EH; Hsin J; von Castelmur E; Mayans O; Schulten K
    Biophys J; 2010 Mar; 98(6):1085-95. PubMed ID: 20303866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computer modeling of force-induced titin domain unfolding.
    Lu H; Krammer A; Isralewitz B; Vogel V; Schulten K
    Adv Exp Med Biol; 2000; 481():143-60; discussion 161-2. PubMed ID: 10987071
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise unfolding of titin under force-clamp atomic force microscopy.
    Oberhauser AF; Hansma PK; Carrion-Vazquez M; Fernandez JM
    Proc Natl Acad Sci U S A; 2001 Jan; 98(2):468-72. PubMed ID: 11149943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.