These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 18391019)

  • 61. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I.
    Gross S; Moore C
    Proc Natl Acad Sci U S A; 2001 May; 98(11):6080-5. PubMed ID: 11344258
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The C terminus of Pcf11 forms a novel zinc-finger structure that plays an essential role in mRNA 3'-end processing.
    Yang F; Hsu P; Lee SD; Yang W; Hoskinson D; Xu W; Moore C; Varani G
    RNA; 2017 Jan; 23(1):98-107. PubMed ID: 27780845
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recruitment of mRNA cleavage/polyadenylation machinery by the yeast chromatin protein Sin1p/Spt2p.
    Hershkovits G; Bangio H; Cohen R; Katcoff DJ
    Proc Natl Acad Sci U S A; 2006 Jun; 103(26):9808-13. PubMed ID: 16788068
    [TBL] [Abstract][Full Text] [Related]  

  • 64. The Glc7 phosphatase subunit of the cleavage and polyadenylation factor is essential for transcription termination on snoRNA genes.
    Nedea E; Nalbant D; Xia D; Theoharis NT; Suter B; Richardson CJ; Tatchell K; Kislinger T; Greenblatt JF; Nagy PL
    Mol Cell; 2008 Mar; 29(5):577-87. PubMed ID: 18342605
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Organizing mRNA export.
    Keene JD
    Nat Genet; 2003 Feb; 33(2):111-2. PubMed ID: 12560814
    [No Abstract]   [Full Text] [Related]  

  • 66. Yeast cap binding complex impedes recruitment of cleavage factor IA to weak termination sites.
    Wong CM; Qiu H; Hu C; Dong J; Hinnebusch AG
    Mol Cell Biol; 2007 Sep; 27(18):6520-31. PubMed ID: 17636014
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Transcription termination and nuclear degradation of cryptic unstable transcripts: a role for the nrd1-nab3 pathway in genome surveillance.
    Thiebaut M; Kisseleva-Romanova E; Rougemaille M; Boulay J; Libri D
    Mol Cell; 2006 Sep; 23(6):853-64. PubMed ID: 16973437
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Alternative polyadenylation diversifies post-transcriptional regulation by selective RNA-protein interactions.
    Gupta I; Clauder-Münster S; Klaus B; Järvelin AI; Aiyar RS; Benes V; Wilkening S; Huber W; Pelechano V; Steinmetz LM
    Mol Syst Biol; 2014; 10(2):719. PubMed ID: 24569168
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [Coordinated pathway of nuclear mRNA export reveled by the genetic analysis in yeast].
    Tani T
    Tanpakushitsu Kakusan Koso; 2009 Dec; 54(16 Suppl):2102-8. PubMed ID: 21089625
    [No Abstract]   [Full Text] [Related]  

  • 70. Structural basis for the dimerization of Nab2 generated by RNA binding provides insight into its contribution to both poly(A) tail length determination and transcript compaction in Saccharomyces cerevisiae.
    Aibara S; Gordon JM; Riesterer AS; McLaughlin SH; Stewart M
    Nucleic Acids Res; 2017 Feb; 45(3):1529-1538. PubMed ID: 28180315
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3' end processing.
    Ahn SH; Kim M; Buratowski S
    Mol Cell; 2004 Jan; 13(1):67-76. PubMed ID: 14731395
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Roles of ABF1, NPL3, and YCL54 in silencing in Saccharomyces cerevisiae.
    Loo S; Laurenson P; Foss M; Dillin A; Rine J
    Genetics; 1995 Nov; 141(3):889-902. PubMed ID: 8582634
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Stability control of MTL1 mRNA by the RNA-binding protein Khd1p in yeast.
    Mauchi N; Ohtake Y; Irie K
    Cell Struct Funct; 2010; 35(2):95-105. PubMed ID: 20953064
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Coupling of termination, 3' processing, and mRNA export.
    Hammell CM; Gross S; Zenklusen D; Heath CV; Stutz F; Moore C; Cole CN
    Mol Cell Biol; 2002 Sep; 22(18):6441-57. PubMed ID: 12192043
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The functional complexity of the RNA-binding protein Yra1: mRNA biogenesis, genome stability and DSB repair.
    Infantino V; Stutz F
    Curr Genet; 2020 Feb; 66(1):63-71. PubMed ID: 31292684
    [TBL] [Abstract][Full Text] [Related]  

  • 76. The yeast RPL9B gene is regulated by modulation between two modes of transcription termination.
    Gudipati RK; Neil H; Feuerbach F; Malabat C; Jacquier A
    EMBO J; 2012 May; 31(10):2427-37. PubMed ID: 22505027
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Regulation of yeast mRNA 3' end processing by phosphorylation.
    He X; Moore C
    Mol Cell; 2005 Sep; 19(5):619-29. PubMed ID: 16137619
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Cell-Cycle Modulation of Transcription Termination Factor Sen1.
    Mischo HE; Chun Y; Harlen KM; Smalec BM; Dhir S; Churchman LS; Buratowski S
    Mol Cell; 2018 Apr; 70(2):312-326.e7. PubMed ID: 29656924
    [TBL] [Abstract][Full Text] [Related]  

  • 79. A guard protein mediated quality control mechanism monitors 5'-capping of pre-mRNAs.
    Klama S; Hirsch AG; Schneider UM; Zander G; Seel A; Krebber H
    Nucleic Acids Res; 2022 Oct; 50(19):11301-11314. PubMed ID: 36305816
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Nab3 nuclear granule accumulation is driven by respiratory capacity.
    Hutchinson KM; Hunn JC; Reines D
    Curr Genet; 2022 Dec; 68(5-6):581-591. PubMed ID: 35922525
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.