These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 18391299)

  • 1. Representing fluid with smoothed particle hydrodynamics in a cranial base simulator.
    Liu W; Sewell C; Blevins N; Salisbury K; Bodin K; Hjelte N
    Stud Health Technol Inform; 2008; 132():257-9. PubMed ID: 18391299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impact of a self-developed planning and self-constructed navigation system on skull base surgery: 10 years experience.
    Caversaccio M; Langlotz F; Nolte LP; Häusler R
    Acta Otolaryngol; 2007 Apr; 127(4):403-7. PubMed ID: 17453461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics.
    Müller M; Schirm S; Teschner M
    Technol Health Care; 2004; 12(1):25-31. PubMed ID: 15096684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Special visual effects for surgical simulation: cauterization, irrigation and suction.
    Agarwal R; Bhasin Y; Raghupathi L; Devarajan V
    Stud Health Technol Inform; 2003; 94():1-3. PubMed ID: 15455853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Virtual temporal bone: an interactive 3-dimensional learning aid for cranial base surgery.
    Kockro RA; Hwang PY
    Neurosurgery; 2009 May; 64(5 Suppl 2):216-29; discussion 229-30. PubMed ID: 19404102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Planning of skull base surgery in the virtual workbench: clinical experiences.
    Kockro RA; Serra L; Tsai YT; Chan C; Sitoh YY; Chua GG; Hern N; Lee E; Hoe LY; Nowinski W
    Stud Health Technol Inform; 1999; 62():187-8. PubMed ID: 10538353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THUMP: an immersive haptic console for surgical simulation and training.
    Niemeyer G; Kuchenbecker KJ; Bonneau R; Mitra P; Reid AM; Fiene J; Weldon G
    Stud Health Technol Inform; 2004; 98():272-4. PubMed ID: 15544287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the visual realism of virtual surgery.
    Jin W; Lim YJ; Xu XG; Singh TP; De S
    Stud Health Technol Inform; 2005; 111():227-33. PubMed ID: 15718733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a networked virtual reality simulation of temporal bone surgery.
    O'Leary SJ; Hutchins MA; Stevenson DR; Gunn C; Krumpholz A; Kennedy G; Tykocinski M; Dahm M; Pyman B
    Laryngoscope; 2008 Jun; 118(6):1040-6. PubMed ID: 18354339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning style and laparoscopic experience in psychomotor skill performance using a virtual reality surgical simulator.
    Windsor JA; Diener S; Zoha F
    Am J Surg; 2008 Jun; 195(6):837-42. PubMed ID: 18417084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual environment-based training simulator for endoscopic third ventriculostomy.
    Brown N; Natsupakpong S; Johannsen S; Manjila S; Cai Q; Liberatore V; Cohen AR; Cavusoglu MC
    Stud Health Technol Inform; 2006; 119():73-5. PubMed ID: 16404017
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simulator to explore the role of haptic feedback in cataract surgery training.
    Doyle L; Gauthier N; Ramanathan S; Okamura A
    Stud Health Technol Inform; 2008; 132():106-11. PubMed ID: 18391267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Objective evaluation of minimally invasive surgical skills for transplantation. Surgeons using a virtual reality simulator.
    Dănilă R; Gerdes B; Ulrike H; Domínguez Fernández E; Hassan I
    Chirurgia (Bucur); 2009; 104(2):181-5. PubMed ID: 19499661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing realism of wet surfaces in temporal bone surgical simulation.
    Kerwin T; Shen HW; Stredney D
    IEEE Trans Vis Comput Graph; 2009; 15(5):747-58. PubMed ID: 19590102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remeshed smoothed particle hydrodynamics simulation of the mechanical behavior of human organs.
    Hieber SE; Walther JH; Koumoutsakos P
    Technol Health Care; 2004; 12(4):305-14. PubMed ID: 15502281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Realistic irrigation visualization in a surgical wound debridement simulator.
    Shen Y; Seevinck J; Baydogan E
    Stud Health Technol Inform; 2006; 119():512-4. PubMed ID: 16404110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physical simulator for endoscopic endonasal drilling techniques: technical note.
    Tai BL; Wang AC; Joseph JR; Wang PI; Sullivan SE; McKean EL; Shih AJ; Rooney DM
    J Neurosurg; 2016 Mar; 124(3):811-6. PubMed ID: 26339850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haptic simulation of the milling process in temporal bone operations.
    Eriksson M; Flemmer H; Wikander J
    Stud Health Technol Inform; 2005; 111():133-6. PubMed ID: 15718714
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collaborative voxel-based surgical virtual environments.
    Acosta E; Muniz G; Armonda R; Bowyer M; Liu A
    Stud Health Technol Inform; 2008; 132():1-3. PubMed ID: 18391245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing and validating a customized virtual reality-based laparoscopic skills curriculum.
    Panait L; Bell RL; Roberts KE; Duffy AJ
    J Surg Educ; 2008; 65(6):413-7. PubMed ID: 19059171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.