These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 18391316)

  • 1. Optimizing joint placement and motion schedule for 2-DOF computer-assisted distraction osteogenesis.
    Oberreuter R; Lucking R; Shimada K
    Stud Health Technol Inform; 2008; 132():336-8. PubMed ID: 18391316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical influences of pin placement and elbow angle on hinge alignment and joint distraction of bridged elbow-pin-fixator construct.
    Shih KS; Lin SC; Chao CK; Lee WS; Lu TW; Hou SM
    J Biomech; 2010 Mar; 43(4):757-63. PubMed ID: 20106480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-assisted distraction osteogenesis by Ilizarov's method.
    Simpson AL; Ma B; Slagel B; Borschneck DP; Ellis RE
    Int J Med Robot; 2008 Dec; 4(4):310-20. PubMed ID: 18924116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional correction of complex leg deformities using a software assisted external fixator.
    Docquier PL; Rodriguez D; Mousny M
    Acta Orthop Belg; 2008 Dec; 74(6):816-22. PubMed ID: 19205330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of correction of complex lower-extremity deformities by the Ilizarov method.
    Tetsworth KD; Paley D
    Clin Orthop Relat Res; 1994 Apr; (301):102-10. PubMed ID: 8156660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Correction of severe post-traumatic deformities in the distal femur by distraction osteogenesis using Taylor Spatial Frame: a case report.
    Nakase T; Ohzono K; Shimizu N; Yoshikawa H
    Arch Orthop Trauma Surg; 2006 Jan; 126(1):66-9. PubMed ID: 16273377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Correction of complex lower extremity deformities with the use of the Ilizarov-Taylor spatial frame].
    Küçükkaya M; Karakoyun O; Armağan R; Kuzgun U
    Acta Orthop Traumatol Turc; 2009; 43(1):1-6. PubMed ID: 19293609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-aided surgical planner for a new bone deformity correction device using axis-angle representation.
    Wu YY; Plakseychuk A; Shimada K
    Med Eng Phys; 2014 Nov; 36(11):1536-42. PubMed ID: 25194468
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Principles of deformity correction using the Taylor Spatial Frame].
    Eidelman M; Chezar A
    Harefuah; 2005 Feb; 144(2):115-8, 149. PubMed ID: 16128017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect.
    Feng Z; Zhao J; Zhou L; Dong Y; Zhao Y
    J Oral Maxillofac Surg; 2009 Oct; 67(10):2266-74. PubMed ID: 19761922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intra-operative correction of Taylor Spatial Frame without a computer.
    Heidari N; Hughes A; Atkins RM
    J Orthop Trauma; 2013 Feb; 27(2):e42-4. PubMed ID: 22648041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer hexapod assisted orthopaedic surgery (CHAOS) in the correction of long bone fracture and deformity.
    Rogers MJ; McFadyen I; Livingstone JA; Monsell F; Jackson M; Atkins RM
    J Orthop Trauma; 2007 May; 21(5):337-42. PubMed ID: 17485999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction of simple and complex pediatric deformities using the Taylor-Spatial Frame.
    Naqui SZ; Thiryayi W; Foster A; Tselentakis G; Evans M; Day JB
    J Pediatr Orthop; 2008 Sep; 28(6):640-7. PubMed ID: 18724200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Usefulness of distraction osteogenesis in the treatment of knee arthrosis].
    Krawczyk A; Morasiewicz L; Orzechowski W; Dragan S; Czapiński J; Kulej M
    Chir Narzadow Ruchu Ortop Pol; 2004; 69(5):305-9. PubMed ID: 15751718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multivectorial, external halo-assisted midface distraction in patients with severe hypoplasia.
    Malagon HH; Romo GW; Quintero Mosqueda FR; Magaña FG
    J Craniofac Surg; 2008 Nov; 19(6):1663-9. PubMed ID: 19098577
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-simulated bi-directional alveolar distraction osteogenesis.
    Kanno T; Mitsugi M; Sukegawa S; Hosoe M; Furuki Y
    Clin Oral Implants Res; 2008 Dec; 19(12):1211-8. PubMed ID: 19040435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hexapod robot external fixator for computer assisted fracture reduction and deformity correction.
    Seide K; Faschingbauer M; Wenzl ME; Weinrich N; Juergens C
    Int J Med Robot; 2004 Jun; 1(1):64-9. PubMed ID: 17520597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of complex foot deformities in children with the taylor spatial frame.
    Eidelman M; Katzman A
    Orthopedics; 2008 Oct; 31(10):. PubMed ID: 19226012
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of distraction osteogenesis. Part II.
    Netscher DT
    Clin Plast Surg; 1998 Oct; 25(4):561-6, viii. PubMed ID: 9917975
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic adjustability of unilateral external fixators for fracture reduction and alignment of axial dynamization.
    Ou YJ
    J Biomech; 2009 Aug; 42(12):1974-80. PubMed ID: 19535080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.