These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

50 related articles for article (PubMed ID: 18391335)

  • 1. Collaborative engineering: 3-D optical imaging and gas exchange simulation of in-vitro alveolar constructs.
    Rolland JP; Lee KS; Mahmood A; Fluck L; Duarte J; Kaya I; Santhanam A; Meemon P; Murali S; Ilegbusi O; Kupelian P; Warren WL; Molnar P; Hickman J; Kolattukudy P
    Stud Health Technol Inform; 2008; 132():426-32. PubMed ID: 18391335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Imaging cellular responses to mechanical stimuli within three-dimensional tissue constructs.
    Tan W; Vinegoni C; Norman JJ; Desai TA; Boppart SA
    Microsc Res Tech; 2007 Apr; 70(4):361-71. PubMed ID: 17262787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of imaging methodologies for 3D tissue engineering.
    Smith LE; Smallwood R; Macneil S
    Microsc Res Tech; 2010 Dec; 73(12):1123-33. PubMed ID: 20981758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional optical coherence tomography-guided phototherapeutic keratectomy for granular corneal dystrophy.
    Mori H; Miura M; Iwasaki T; Goto H; Sakurai Y; Watanabe Y; Yasuno Y
    Cornea; 2009 Sep; 28(8):944-7. PubMed ID: 19654514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Model-based 2.5-d deconvolution for extended depth of field in brightfield microscopy.
    Aguet F; Van De Ville D; Unser M
    IEEE Trans Image Process; 2008 Jul; 17(7):1144-53. PubMed ID: 18586622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural and functional optical imaging of three-dimensional engineered tissue development.
    Tan W; Sendemir-Urkmez A; Fahrner LJ; Jamison R; Leckband D; Boppart SA
    Tissue Eng; 2004; 10(11-12):1747-56. PubMed ID: 15684683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual skin biopsy with Gabor Domain optical coherence microscopy.
    Rolland JP; Lee KS; Khoudeir L; Meemon P; Thompson KP; Huang J; Yao J; Ibrahim SF
    Stud Health Technol Inform; 2012; 173():398-404. PubMed ID: 22357025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational simulation of oxygen diffusion in aortic valve leaflet for tissue engineering applications.
    Wang L; Korossis S; Ingham E; Fisher J; Jin Z
    J Heart Valve Dis; 2008 Nov; 17(6):700-9. PubMed ID: 19137804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An automatic algorithm for detecting stent endothelialization from volumetric optical coherence tomography datasets.
    Bonnema GT; Cardinal KO; Williams SK; Barton JK
    Phys Med Biol; 2008 Jun; 53(12):3083-98. PubMed ID: 18495980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computer-simulated bi-directional alveolar distraction osteogenesis.
    Kanno T; Mitsugi M; Sukegawa S; Hosoe M; Furuki Y
    Clin Oral Implants Res; 2008 Dec; 19(12):1211-8. PubMed ID: 19040435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo imaging of human labial glands using advanced optical coherence tomography.
    Ozawa N; Sumi Y; Shimozato K; Chong C; Kurabayashi T
    Oral Surg Oral Med Oral Pathol Oral Radiol Endod; 2009 Sep; 108(3):425-9. PubMed ID: 19716509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional anterior segment optical coherence tomography of filtering blebs after trabeculectomy.
    Miura M; Kawana K; Iwasaki T; Kiuchi T; Oshika T; Mori H; Yamanari M; Makita S; Yatagai T; Yasuno Y
    J Glaucoma; 2008; 17(3):193-6. PubMed ID: 18414104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A model of speckle contrast in optical coherence tomography for characterizing the scattering coefficient of homogenous tissues.
    Li Z; Li H; He Y; Cai S; Xie S
    Phys Med Biol; 2008 Oct; 53(20):5859-66. PubMed ID: 18827323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of rapid prototyping techniques for tissue engineering purposes.
    Peltola SM; Melchels FP; Grijpma DW; Kellomäki M
    Ann Med; 2008; 40(4):268-80. PubMed ID: 18428020
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth and differentiation of alveolar bone cells in tissue-engineered constructs and monolayer cultures.
    Malicev E; Marolt D; Kregar Velikonja N; Kreft ME; Drobnic M; Rode M
    Biotechnol Bioeng; 2008 Jul; 100(4):773-81. PubMed ID: 18496876
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical three-dimensional scanning acquisition of the position of osseointegrated implants: an in vitro study to determine method accuracy and operational feasibility.
    Del Corso M; Abà G; Vazquez L; Dargaud J; Dohan Ehrenfest DM
    Clin Implant Dent Relat Res; 2009 Sep; 11(3):214-21. PubMed ID: 18657149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three- and four-dimensional visualization of cell migration using optical coherence tomography.
    Rey SM; Povazay B; Hofer B; Unterhuber A; Hermann B; Harwood A; Drexler W
    J Biophotonics; 2009 Jul; 2(6-7):370-9. PubMed ID: 19475627
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Features of age-related macular degeneration assessed with three-dimensional Fourier-domain optical coherence tomography.
    Menke MN; Dabov S; Sturm V
    Br J Ophthalmol; 2008 Nov; 92(11):1492-7. PubMed ID: 18703554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time in vivo imaging of adult zebrafish brain using optical coherence tomography.
    Rao KD; Alex A; Verma Y; Thampi S; Gupta PK
    J Biophotonics; 2009 May; 2(5):288-91. PubMed ID: 19434615
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-dimensional high-speed optical coherence tomography imaging of lamina cribrosa in glaucoma.
    Inoue R; Hangai M; Kotera Y; Nakanishi H; Mori S; Morishita S; Yoshimura N
    Ophthalmology; 2009 Feb; 116(2):214-22. PubMed ID: 19091413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.