These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 18391356)

  • 1. Augmented reality assistance for realization of incision planning and model-based analysis of the modified surface model.
    Sudra G; Speidel S; Platzek S; Müller-Stich BP; Dillmann R
    Stud Health Technol Inform; 2008; 132():505-7. PubMed ID: 18391356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraoperative visualization of surgical planning data using video projectors.
    Hoppe H; Däuber S; Raczkowsky J; Wörn H; Moctezuma JL
    Stud Health Technol Inform; 2001; 81():206-8. PubMed ID: 11317740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery.
    Megali G; Ferrari V; Freschi C; Morabito B; Cavallo F; Turini G; Troia E; Cappelli C; Pietrabissa A; Tonet O; Cuschieri A; Dario P; Mosca F
    Int J Med Robot; 2008 Sep; 4(3):242-51. PubMed ID: 18698670
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Steps towards open standards for medical virtual reality systems.
    Burgert O; Gessat M; Jacobs S; Falk V; Lemke HU
    Stud Health Technol Inform; 2008; 132():62-7. PubMed ID: 18391258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A haptic VR milling surgery simulator--using high-resolution CT-data.
    Eriksson M; Dixon M; Wikander J
    Stud Health Technol Inform; 2006; 119():138-43. PubMed ID: 16404033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time volumetric deformation for surgical simulation using force feedback device.
    Wakai S; Suzuki N; Hattori A; Suzuki S; Uchiyama A
    Stud Health Technol Inform; 2003; 94():386-8. PubMed ID: 15455930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient dynamic point algorithm for line-based collision detection in real time surgery simulation involving haptics.
    Maciel A; De S
    Stud Health Technol Inform; 2008; 132():266-71. PubMed ID: 18391302
    [TBL] [Abstract][Full Text] [Related]  

  • 8. User interface paradigms for patient-specific surgical planning: lessons learned over a decade of research.
    Montgomery K; Stephanides M; Schendel S; Ross M
    Comput Med Imaging Graph; 2005; 29(2-3):203-22. PubMed ID: 15755538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physics-based preoperative approach planning using hybrid virtual bodies.
    Nakao M; Kuroda T; Komori M; Oyama H; Komeda M
    Stud Health Technol Inform; 2004; 98():262-4. PubMed ID: 15544285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A vision-based surgical tool tracking approach for untethered surgery simulation and training.
    English J; Chang CY; Tardella N; Hu J
    Stud Health Technol Inform; 2005; 111():126-32. PubMed ID: 15718713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interrogative visualization: embedding deformation and Constructive Solid Geometry into volume visualization.
    Rajagopalan S; Robb R
    Stud Health Technol Inform; 2003; 94():268-74. PubMed ID: 15455906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surgical planning system for soft tissues using virtual reality.
    Suzuki N; Hattori A; Kai S; Ezumi T; Takatsu A
    Stud Health Technol Inform; 1997; 39():159-63. PubMed ID: 10173054
    [No Abstract]   [Full Text] [Related]  

  • 13. A pattern catalogue of surgical interventions for computer-supported operation planning.
    Münchenberg J; Wörn H; Brief J; Hassfeld S; Mühling J
    Stud Health Technol Inform; 2000; 70():227-9. PubMed ID: 10977545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A collaborative interaction and visualization multi-modal environment for surgical planning.
    Foo JL; Martinez-Escobar M; Peloquin C; Lobe T; Winer E
    Stud Health Technol Inform; 2009; 142():97-102. PubMed ID: 19377123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A prototype virtual reality system for preoperative planning of neuro-endovascular interventions.
    Subramanian N; Kesavadas T; Hoffmann KR
    Stud Health Technol Inform; 2004; 98():376-81. PubMed ID: 15544308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surgical planning for microsurgical excision of cerebral arterio-venous malformations using virtual reality technology.
    Ng I; Hwang PY; Kumar D; Lee CK; Kockro RA; Sitoh YY
    Acta Neurochir (Wien); 2009 May; 151(5):453-63; discussion 463. PubMed ID: 19319471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraoperative augmented reality: the surgeons view.
    Eggers G; Salb T; Hoppe H; Kahrs L; Ghanai S; Sudra G; Raczkowsky J; Dillmann R; Wörn H; Hassfeld S; Marmulla R
    Stud Health Technol Inform; 2005; 111():123-5. PubMed ID: 15718712
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of virtual reality simulation of head trauma in a surgical boot camp.
    Vergara VM; Panaiotis ; Kingsley D; Alverson DC; Godsmith T; Xia S; Caudell TP
    Stud Health Technol Inform; 2009; 142():395-7. PubMed ID: 19377192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Virtual open heart surgery segmentation.
    Jean S; Jesper M; Thomas S
    Stud Health Technol Inform; 2007; 125():448-50. PubMed ID: 17377322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Medical virtual reality: an application to surgery simulation].
    Suzuki S; Suzuki N; Hattori A; Hayashibe M; Otake Y; Konishi K; Kakeji Y; Hashizume M
    Fukuoka Igaku Zasshi; 2005 Feb; 96(2):44-8. PubMed ID: 15852662
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.