These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 18391405)

  • 1. Exploring structural variability in X-ray crystallographic models using protein local optimization by torsion-angle sampling.
    Knight JL; Zhou Z; Gallicchio E; Himmel DM; Friesner RA; Arnold E; Levy RM
    Acta Crystallogr D Biol Crystallogr; 2008 Apr; 64(Pt 4):383-96. PubMed ID: 18391405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the dynamic information content of a protein NMR structure: comparison of a molecular dynamics simulation with the NMR and X-ray structures of Escherichia coli ribonuclease HI.
    Philippopoulos M; Lim C
    Proteins; 1999 Jul; 36(1):87-110. PubMed ID: 10373009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Flexibility of Ubiquitin-Modified and SUMO-Modified PCNA Shown by Full-Ensemble Hybrid Methods.
    Powers KT; Lavering ED; Washington MT
    J Mol Biol; 2018 Dec; 430(24):5294-5303. PubMed ID: 30381149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum.
    Moulinier L; Case DA; Simonson T
    Acta Crystallogr D Biol Crystallogr; 2003 Dec; 59(Pt 12):2094-103. PubMed ID: 14646067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring ligand dynamics in protein crystal structures with ensemble refinement.
    Caldararu O; Ekberg V; Logan DT; Oksanen E; Ryde U
    Acta Crystallogr D Struct Biol; 2021 Aug; 77(Pt 8):1099-1115. PubMed ID: 34342282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Torsion angle dynamics: reduced variable conformational sampling enhances crystallographic structure refinement.
    Rice LM; Brünger AT
    Proteins; 1994 Aug; 19(4):277-90. PubMed ID: 7984624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the quality of NMR and crystallographic protein structures by means of a conformational database potential derived from structure databases.
    Kuszewski J; Gronenborn AM; Clore GM
    Protein Sci; 1996 Jun; 5(6):1067-80. PubMed ID: 8762138
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of multiple well defined conformations on small-angle scattering of proteins in solution.
    Heller WT
    Acta Crystallogr D Biol Crystallogr; 2005 Jan; 61(Pt 1):33-44. PubMed ID: 15608373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformer selection and induced fit in flexible backbone protein-protein docking using computational and NMR ensembles.
    Chaudhury S; Gray JJ
    J Mol Biol; 2008 Sep; 381(4):1068-87. PubMed ID: 18640688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exposing Hidden Alternative Backbone Conformations in X-ray Crystallography Using qFit.
    Keedy DA; Fraser JS; van den Bedem H
    PLoS Comput Biol; 2015 Oct; 11(10):e1004507. PubMed ID: 26506617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Protein Loop Conformations using the AGBNP Implicit Solvent Model and Torsion Angle Sampling.
    Felts AK; Gallicchio E; Chekmarev D; Paris KA; Friesner RA; Levy RM
    J Chem Theory Comput; 2008; 4(5):855-868. PubMed ID: 18787648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T-Analyst: a program for efficient analysis of protein conformational changes by torsion angles.
    Ai R; Qaiser Fatmi M; Chang CE
    J Comput Aided Mol Des; 2010 Oct; 24(10):819-27. PubMed ID: 20689979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automating crystallographic structure solution and refinement of protein-ligand complexes.
    Echols N; Moriarty NW; Klei HE; Afonine PV; Bunkóczi G; Headd JJ; McCoy AJ; Oeffner RD; Read RJ; Terwilliger TC; Adams PD
    Acta Crystallogr D Biol Crystallogr; 2014 Jan; 70(Pt 1):144-54. PubMed ID: 24419387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography.
    DePristo MA; de Bakker PI; Blundell TL
    Structure; 2004 May; 12(5):831-8. PubMed ID: 15130475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein conformational dynamics in the mechanism of HIV-1 protease catalysis.
    Torbeev VY; Raghuraman H; Hamelberg D; Tonelli M; Westler WM; Perozo E; Kent SB
    Proc Natl Acad Sci U S A; 2011 Dec; 108(52):20982-7. PubMed ID: 22158985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knowledge-based versus experimentally acquired distance and angle constraints for NMR structure refinement.
    Cui F; Jernigan R; Wu Z
    J Bioinform Comput Biol; 2008 Apr; 6(2):283-300. PubMed ID: 18464323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix.
    Moriarty NW; Janowski PA; Swails JM; Nguyen H; Richardson JS; Case DA; Adams PD
    Acta Crystallogr D Struct Biol; 2020 Jan; 76(Pt 1):51-62. PubMed ID: 31909743
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The critical role of QM/MM X-ray refinement and accurate tautomer/protomer determination in structure-based drug design.
    Borbulevych OY; Martin RI; Westerhoff LM
    J Comput Aided Mol Des; 2021 Apr; 35(4):433-451. PubMed ID: 33108589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the quality of NMR structures by local density of protons.
    Ban YE; Rudolph J; Zhou P; Edelsbrunner H
    Proteins; 2006 Mar; 62(4):852-64. PubMed ID: 16342274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.