These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 1839141)

  • 1. Maltodextrin acceptor reactions of Streptococcus mutans 6715 glucosyltransferases.
    Fu DT; Robyt JF
    Carbohydr Res; 1991 Sep; 217():201-11. PubMed ID: 1839141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceptor reactions of maltodextrins with Leuconostoc mesenteroides B-512FM dextransucrase.
    Fu DT; Robyt JF
    Arch Biochem Biophys; 1990 Dec; 283(2):379-87. PubMed ID: 2148865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase.
    Su D; Robyt JF
    Carbohydr Res; 1993 Oct; 248():339-48. PubMed ID: 7504583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of the maltose acceptor-products synthesized by Leuconostoc mesenteroides NRRL B-1299 dextransucrase.
    Dols M; Simeon MR; Willemot RM; Vignon MR; Monsan PF
    Carbohydr Res; 1997 Dec; 305(3-4):549-59. PubMed ID: 9648272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disproportionation reactions catalyzed by Leuconostoc and Streptococcus glucansucrases.
    Binder TP; Côté GL; Robyt JF
    Carbohydr Res; 1983 Dec; 124(2):275-86. PubMed ID: 6671200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A TRANSGLUCOSYLASE OF STREPTOCOCCUS BOVIS.
    WALKER GJ
    Biochem J; 1965 Feb; 94(2):299-308. PubMed ID: 14346086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase.
    Robyt JF; Walseth TF
    Carbohydr Res; 1978 Mar; 61():433-45. PubMed ID: 647705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transglycosylation reactions of Bacillus stearothermophilus maltogenic amylase with acarbose and various acceptors.
    Park KH; Kim MJ; Lee HS; Han NS; Kim D; Robyt JF
    Carbohydr Res; 1998 Dec; 313(3-4):235-46. PubMed ID: 10209866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities.
    Joyet P; Mokhtari A; Riboulet-Bisson E; Blancato VS; Espariz M; Magni C; Hartke A; Deutscher J; Sauvageot N
    Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455338
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel oligosaccharides synthesized from sucrose donor and cellobiose acceptor by alternansucrase.
    Argüello Morales MA; Remaud-Simeon M; Willemot RM; Vignon MR; Monsan P
    Carbohydr Res; 2001 Apr; 331(4):403-11. PubMed ID: 11398982
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase.
    Robyt JF; Eklund SH
    Carbohydr Res; 1983 Sep; 121():279-86. PubMed ID: 6230152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of 4,6-dideoxysucrose, and inhibition studies of Leuconostoc and Streptococcus D-glucansucrases with deoxy and chloro derivatives of sucrose modified at carbon atoms 3, 4, and 6.
    Tanriseven A; Robyt JF
    Carbohydr Res; 1989 Feb; 186(1):87-94. PubMed ID: 2524254
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of Isomaltooligosaccharide Size Distribution by Acceptor Reaction of Weissella confusa Dextransucrase and Characterization of Novel α-(1→2)-Branched Isomaltooligosaccharides.
    Shi Q; Hou Y; Juvonen M; Tuomainen P; Kajala I; Shukla S; Goyal A; Maaheimo H; Katina K; Tenkanen M
    J Agric Food Chem; 2016 Apr; 64(16):3276-86. PubMed ID: 27050481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of branched dextrans in the acceptor reaction of a glucosyltransferase (GTF-I) from Streptococcus mutans OMZ176.
    Walker GJ; Schuerch C
    Carbohydr Res; 1986 Feb; 146(2):259-70. PubMed ID: 2420448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the number of sucrose and acceptor binding sites for Leuconostoc mesenteroides B-512FM dextransucrase, and the confirmation of the two-site mechanism for dextran synthesis.
    Su D; Robyt JF
    Arch Biochem Biophys; 1994 Feb; 308(2):471-6. PubMed ID: 7509148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of alpha-(1-->6), alpha-(1-->3), and alpha-(1-->2) glycosidic linkages by dextransucrase from Streptococcus sanguis in acceptor-dependent reactions.
    Bhattacharjee MK; Mayer RM
    Carbohydr Res; 1993 Apr; 242():191-201. PubMed ID: 8495440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Streptococcus mutans 6715 glucosyltransferases by sucrose analogs modified at positions 6 and 6'.
    Binder TP; Robyt JF
    Carbohydr Res; 1985 Jul; 140(1):9-20. PubMed ID: 2932220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition- and acceptor-reaction studies of Streptococcus mutans 6715 glucosyltransferases with 3-deoxysucrose, 3-deoxy-3-fluorosucrose, and alpha-D-allopyranosyl beta-D-fructofuranoside.
    Binder TP; Robyt JF
    Carbohydr Res; 1986 Oct; 154():229-38. PubMed ID: 2947681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of amino acid residues in Streptococcus mutans glucosyltransferases influencing the structure of the glucan product.
    Shimamura A; Nakano YJ; Mukasa H; Kuramitsu HK
    J Bacteriol; 1994 Aug; 176(16):4845-50. PubMed ID: 8050997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dextran acceptor reaction of Streptococcus sobrinus glucosyltransferase GTF-I as revealed by using uniformly 13C-labeled sucrose.
    Mukasa H; Tsumori H; Shimamura A
    Carbohydr Res; 2001 Jun; 333(1):19-26. PubMed ID: 11423107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.