BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 18391452)

  • 1. Proposed oxidative metabolic pathway for polypropylene glycol in Sphingobium sp. strain PW-1.
    Hu X; Liu X; Tani A; Kimbara K; Kawai F
    Biosci Biotechnol Biochem; 2008 Apr; 72(4):1115-8. PubMed ID: 18391452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation of bacteria able to grow on both polyethylene glycol (PEG) and polypropylene glycol (PPG) and their PEG/PPG dehydrogenases.
    Hu X; Fukutani A; Liu X; Kimbara K; Kawai F
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1407-13. PubMed ID: 17043822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification and characterization of cytoplasmic NAD-dependent polypropylene glycol dehydrogenase from Stenotrophomonas maltophilia.
    Tachibana S; Naka N; Kawai F; Yasuda M
    FEMS Microbiol Lett; 2008 Nov; 288(2):266-72. PubMed ID: 19054086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial degradation of polyethers.
    Kawai F
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):30-8. PubMed ID: 11831473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of polyether mixtures using thin-layer chromatography and matrix-assisted laser desorption/ionization mass spectrometry.
    Watanabe T; Kawasaki H; Kimoto T; Arakawa R
    Rapid Commun Mass Spectrom; 2007; 21(5):787-91. PubMed ID: 17279480
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biodegradation of poly(propylene glycol)s under the conditions of the OECD screening test.
    Zgola-Grzeskowiak A; Grzeskowiak T; Zembrzuska J; Franska M; Franski R; Kozik T; Lukaszewski Z
    Chemosphere; 2007 Mar; 67(5):928-33. PubMed ID: 17173952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of a quinoprotein (PQQ-containing) alcohol dehydrogenase in the degradation of polypropylene glycols by the bacterium Stenotrophomonas maltophilia.
    Tachibana S; Kuba N; Kawai F; Duine JA; Yasuda M
    FEMS Microbiol Lett; 2003 Jan; 218(2):345-9. PubMed ID: 12586415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) of low molecular weight organic compounds and synthetic polymers using zinc oxide (ZnO) nanoparticles.
    Watanabe T; Kawasaki H; Yonezawa T; Arakawa R
    J Mass Spectrom; 2008 Aug; 43(8):1063-71. PubMed ID: 18286665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of phosphoesterases in tributyl phosphate degradation in Sphingobium sp. strain RSMS.
    Rangu SS; Basu B; Muralidharan B; Tripathi SC; Apte SK
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):461-8. PubMed ID: 26399413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MALDI-TOF MS analysis of ribosomal proteins coded in S10 and spc operons rapidly classified the Sphingomonadaceae as alkylphenol polyethoxylate-degrading bacteria from the environment.
    Hotta Y; Sato H; Hosoda A; Tamura H
    FEMS Microbiol Lett; 2012 May; 330(1):23-9. PubMed ID: 22324315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the catabolic pathway for a phenylcoumaran-type lignin-derived biaryl in Sphingobium sp. strain SYK-6.
    Takahashi K; Kamimura N; Hishiyama S; Hara H; Kasai D; Katayama Y; Fukuda M; Kajita S; Masai E
    Biodegradation; 2014 Sep; 25(5):735-45. PubMed ID: 24916011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite.
    Dadhwal M; Jit S; Kumari H; Lal R
    Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):3140-4. PubMed ID: 19643888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extension of Sphingobium sp. BHC-A to a 2,4,5-trichlorophenoxyacetic acid mineralizing strain by metabolic engineering.
    Ge F; Chen X; Wang X; Liao X; Jiao Y; Hong Q; Zhang L; Wu J
    J Biotechnol; 2013 Jul; 166(4):187-91. PubMed ID: 23747683
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sphingobium vermicomposti sp. nov., isolated from vermicompost.
    Vaz-Moreira I; Faria C; Lopes AR; Svensson L; Falsen E; Moore ER; Ferreira AC; Nunes OC; Manaia CM
    Int J Syst Evol Microbiol; 2009 Dec; 59(Pt 12):3145-9. PubMed ID: 19643879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of electrospray deposition in matrix-assisted laser desorption/ionization mass spectrometry sample preparation for synthetic polymers.
    Wetzel SJ; Guttman CM; Flynn KM
    Rapid Commun Mass Spectrom; 2004; 18(10):1139-46. PubMed ID: 15150839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased stability of PEG-PPG conjugated human urokinase against autolysis.
    Kajihara J; Shibata K; Kato K
    Biosci Biotechnol Biochem; 1997 Jan; 61(1):197-8. PubMed ID: 9028052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biodegradation of poly(ethylene glycol)s and poly(propylene glycol)s.
    Zgoła-Grześkowiak A; Grześkowiak T; Zembrzuska J; Łukaszewski Z
    Chemosphere; 2006 Jul; 64(5):803-9. PubMed ID: 16343594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Desorption electrospray ionisation mass spectrometry and tandem mass spectrometry of low molecular weight synthetic polymers.
    Jackson AT; Williams JP; Scrivens JH
    Rapid Commun Mass Spectrom; 2006; 20(18):2717-27. PubMed ID: 16912984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biodegradability relationships among propylene glycol substances in the Organization for Economic Cooperation and Development ready- and seawater biodegradability tests.
    West RJ; Davis JW; Pottenger LH; Banton MI; Graham C
    Environ Toxicol Chem; 2007 May; 26(5):862-71. PubMed ID: 17521130
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil.
    Singh A; Lal R
    Int J Syst Evol Microbiol; 2009 Jan; 59(Pt 1):162-6. PubMed ID: 19126742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.