These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 18391499)

  • 41. Increased bone formation and osteoblastic cell phenotype in premature cranial suture ossification (craniosynostosis).
    De Pollack C; Renier D; Hott M; Marie PJ
    J Bone Miner Res; 1996 Mar; 11(3):401-7. PubMed ID: 8852951
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integration of FGF and TWIST in calvarial bone and suture development.
    Rice DP; Aberg T; Chan Y; Tang Z; Kettunen PJ; Pakarinen L; Maxson RE; Thesleff I
    Development; 2000 May; 127(9):1845-55. PubMed ID: 10751173
    [TBL] [Abstract][Full Text] [Related]  

  • 43. PIN1 is a new therapeutic target of craniosynostosis.
    Shin HR; Bae HS; Kim BS; Yoon HI; Cho YD; Kim WJ; Choi KY; Lee YS; Woo KM; Baek JH; Ryoo HM
    Hum Mol Genet; 2018 Nov; 27(22):3827-3839. PubMed ID: 30007339
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Minor Suture Fusion in Syndromic Craniosynostosis.
    Runyan CM; Xu M D W; Alperovich M; Massie M D JP; Paek G; Cohen BA; Staffenberg DA; Flores RL; Taylor JA
    Plast Reconstr Surg; 2017 Sep; 140(3):434e-445e. PubMed ID: 28574949
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis.
    Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC
    BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PIN1 Attenuation Improves Midface Hypoplasia in a Mouse Model of Apert Syndrome.
    Kim B; Shin H; Kim W; Kim H; Cho Y; Yoon H; Baek J; Woo K; Lee Y; Ryoo H
    J Dent Res; 2020 Feb; 99(2):223-232. PubMed ID: 31869252
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Clinical study and some molecular features of Mexican patients with syndromic craniosynostosis.
    Ibarra-Arce A; Almaraz-Salinas M; Martínez-Rosas V; Ortiz de Zárate-Alarcón G; Flores-Peña L; Romero-Valdovinos M; Olivo-Díaz A
    Mol Genet Genomic Med; 2020 Aug; 8(8):e1266. PubMed ID: 32510873
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Twist is required for establishment of the mouse coronal suture.
    Yoshida T; Phylactou LA; Uney JB; Ishikawa I; Eto K; Iseki S
    J Anat; 2005 May; 206(5):437-44. PubMed ID: 15857364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Cranial suture biology and dental development: genetic and clinical perspectives.
    De Coster PJ; Mortier G; Marks LA; Martens LC
    J Oral Pathol Med; 2007 Sep; 36(8):447-55. PubMed ID: 17686002
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular and cellular bases of syndromic craniosynostoses.
    Bonaventure J; El Ghouzzi V
    Expert Rev Mol Med; 2003 Jan; 5(4):1-17. PubMed ID: 14987407
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Ser252Trp [corrected] substitution in mouse fibroblast growth factor receptor 2 (Fgfr2) results in craniosynostosis.
    Chen L; Li D; Li C; Engel A; Deng CX
    Bone; 2003 Aug; 33(2):169-78. PubMed ID: 14499350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth.
    Yu K; Xu J; Liu Z; Sosic D; Shao J; Olson EN; Towler DA; Ornitz DM
    Development; 2003 Jul; 130(13):3063-74. PubMed ID: 12756187
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screening of patients with craniosynostosis: molecular strategy.
    Chun K; Teebi AS; Azimi C; Steele L; Ray PN
    Am J Med Genet A; 2003 Aug; 120A(4):470-3. PubMed ID: 12884424
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Toward an understanding of nonsyndromic craniosynostosis: altered patterns of TGF-beta receptor and FGF receptor expression induced by intrauterine head constraint.
    Hunenko O; Karmacharya J; Ong G; Kirschner RE
    Ann Plast Surg; 2001 May; 46(5):546-53; discussion 553-4. PubMed ID: 11352430
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Impact of genetics on the diagnosis and clinical management of syndromic craniosynostoses.
    Agochukwu NB; Solomon BD; Muenke M
    Childs Nerv Syst; 2012 Sep; 28(9):1447-63. PubMed ID: 22872262
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Q289P mutation in FGFR2 gene causes Saethre-Chotzen syndrome: some considerations about familial heterogeneity.
    Freitas EC; Nascimento SR; de Mello MP; Gil-da-Silva-Lopes VL
    Cleft Palate Craniofac J; 2006 Mar; 43(2):142-7. PubMed ID: 16526917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The craniofacial phenotype of the Crouzon mouse: analysis of a model for syndromic craniosynostosis using three-dimensional MicroCT.
    Perlyn CA; DeLeon VB; Babbs C; Govier D; Burell L; Darvann T; Kreiborg S; Morriss-Kay G
    Cleft Palate Craniofac J; 2006 Nov; 43(6):740-8. PubMed ID: 17105336
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The growth of the posterior cranial fossa in FGFR2-induced faciocraniosynostosis: A review.
    Coll G; Abed Rabbo F; Jecko V; Sakka L; Di Rocco F; Delion M
    Neurochirurgie; 2019 Nov; 65(5):221-227. PubMed ID: 31557489
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genetic basis of single-suture synostoses: genes, chromosomes and clinical implications.
    Lattanzi W; Bukvic N; Barba M; Tamburrini G; Bernardini C; Michetti F; Di Rocco C
    Childs Nerv Syst; 2012 Sep; 28(9):1301-10. PubMed ID: 22872241
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Early onset of craniosynostosis in an Apert mouse model reveals critical features of this pathology.
    Holmes G; Rothschild G; Roy UB; Deng CX; Mansukhani A; Basilico C
    Dev Biol; 2009 Apr; 328(2):273-84. PubMed ID: 19389359
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.