BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 18391787)

  • 1. Pleiotrophin, a multifunctional angiogenic factor: mechanisms and pathways in normal and pathological angiogenesis.
    Perez-Pinera P; Berenson JR; Deuel TF
    Curr Opin Hematol; 2008 May; 15(3):210-4. PubMed ID: 18391787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the angiogenesis signaling domain in pleiotrophin defines a mechanism of the angiogenic switch.
    Zhang N; Zhong R; Perez-Pinera P; Herradon G; Ezquerra L; Wang ZY; Deuel TF
    Biochem Biophys Res Commun; 2006 May; 343(2):653-8. PubMed ID: 16554021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pleiotrophin: a cytokine with diverse functions and a novel signaling pathway.
    Deuel TF; Zhang N; Yeh HJ; Silos-Santiago I; Wang ZY
    Arch Biochem Biophys; 2002 Jan; 397(2):162-71. PubMed ID: 11795867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pleiotrophin induces formation of functional neovasculature in vivo.
    Christman KL; Fang Q; Kim AJ; Sievers RE; Fok HH; Candia AF; Colley KJ; Herradon G; Ezquerra L; Deuel TF; Lee RJ
    Biochem Biophys Res Commun; 2005 Jul; 332(4):1146-52. PubMed ID: 15949466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox signaling in angiogenesis: role of NADPH oxidase.
    Ushio-Fukai M
    Cardiovasc Res; 2006 Jul; 71(2):226-35. PubMed ID: 16781692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heparin-binding protein pleiotrophin: an important player in the angiogenic process.
    Mikelis C; Papadimitriou E
    Connect Tissue Res; 2008; 49(3):149-52. PubMed ID: 18661331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of the mitogenic, angiogenic and tumorigenic activities of pleiotrophin by a synthetic peptide corresponding to its C-thrombospondin repeat-I domain.
    Hamma-Kourbali Y; Bernard-Pierrot I; Heroult M; Dalle S; Caruelle D; Milhiet PE; Fernig DG; Delbé J; Courty J
    J Cell Physiol; 2008 Jan; 214(1):250-9. PubMed ID: 17607711
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aprotinin stimulates angiogenesis and human endothelial cell migration through the growth factor pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta.
    Koutsioumpa M; Hatziapostolou M; Mikelis C; Koolwijk P; Papadimitriou E
    Eur J Pharmacol; 2009 Jan; 602(2-3):245-9. PubMed ID: 19059395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A peptide corresponding to the C-terminal region of pleiotrophin inhibits angiogenesis in vivo and in vitro.
    Mikelis C; Lamprou M; Koutsioumpa M; Koutsioubas AG; Spyranti Z; Zompra AA; Spiliopoulos N; Vradis AA; Katsoris P; Spyroulias GA; Cordopatis P; Courty J; Papadimitriou E
    J Cell Biochem; 2011 Jun; 112(6):1532-43. PubMed ID: 21344482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An angiogenic role for the neurokines midkine and pleiotrophin in tumorigenesis.
    Choudhuri R; Zhang HT; Donnini S; Ziche M; Bicknell R
    Cancer Res; 1997 May; 57(9):1814-9. PubMed ID: 9135027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pleiotrophin can be rate-limiting for pancreatic cancer cell growth.
    Weber D; Klomp HJ; Czubayko F; Wellstein A; Juhl H
    Cancer Res; 2000 Sep; 60(18):5284-8. PubMed ID: 11016659
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HARP induces angiogenesis in vivo and in vitro: implication of N or C terminal peptides.
    Papadimitriou E; Polykratis A; Courty J; Koolwijk P; Heroult M; Katsoris P
    Biochem Biophys Res Commun; 2001 Mar; 282(1):306-13. PubMed ID: 11264008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pleiotrophin, a multifunctional tumor promoter through induction of tumor angiogenesis, remodeling of the tumor microenvironment, and activation of stromal fibroblasts.
    Perez-Pinera P; Chang Y; Deuel TF
    Cell Cycle; 2007 Dec; 6(23):2877-83. PubMed ID: 18156802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BTB-Kelch protein KLEIP controls endothelial migration and sprouting angiogenesis.
    Nacak TG; Alajati A; Leptien K; Fulda C; Weber H; Miki T; Czepluch FS; Waltenberger J; Wieland T; Augustin HG; Kroll J
    Circ Res; 2007 Apr; 100(8):1155-63. PubMed ID: 17395875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pleiotrophin and midkine in normal development and tumor biology.
    Kurtz A; Schulte AM; Wellstein A
    Crit Rev Oncog; 1995; 6(2):151-77. PubMed ID: 8792088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nerve growth factor as an angiogenic factor.
    Nico B; Mangieri D; Benagiano V; Crivellato E; Ribatti D
    Microvasc Res; 2008 Mar; 75(2):135-41. PubMed ID: 17764704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulators of angiogenesis and strategies for their therapeutic manipulation.
    Milkiewicz M; Ispanovic E; Doyle JL; Haas TL
    Int J Biochem Cell Biol; 2006 Mar; 38(3):333-57. PubMed ID: 16309946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vascular endothelial growth factor and angiogenesis.
    Hoeben A; Landuyt B; Highley MS; Wildiers H; Van Oosterom AT; De Bruijn EA
    Pharmacol Rev; 2004 Dec; 56(4):549-80. PubMed ID: 15602010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. STAT3: a critical transcription activator in angiogenesis.
    Chen Z; Han ZC
    Med Res Rev; 2008 Mar; 28(2):185-200. PubMed ID: 17457812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pleiotrophin and its receptor protein tyrosine phosphatase beta/zeta as regulators of angiogenesis and cancer.
    Papadimitriou E; Pantazaka E; Castana P; Tsalios T; Polyzos A; Beis D
    Biochim Biophys Acta; 2016 Dec; 1866(2):252-265. PubMed ID: 27693125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.