BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

54 related articles for article (PubMed ID: 18391984)

  • 1. FOXO3a mediates the androgen-dependent regulation of FLIP and contributes to TRAIL-induced apoptosis of LNCaP cells.
    Cornforth AN; Davis JS; Khanifar E; Nastiuk KL; Krolewski JJ
    Oncogene; 2008 Jul; 27(32):4422-33. PubMed ID: 18391984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stromal anti-apoptotic androgen receptor target gene c-FLIP in prostate cancer.
    Ye H; Li Y; Melamed J; Pearce P; Wei J; Chiriboga L; Wang Z; Osman I; Lee P
    J Urol; 2009 Feb; 181(2):872-7. PubMed ID: 19095249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulating behavior with the flip of a translational switch.
    Ceh-Pavia E; Partch CL
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):13151-13153. PubMed ID: 30545908
    [No Abstract]   [Full Text] [Related]  

  • 4. Cancer Stem Cells and Androgen Receptor Signaling: Partners in Disease Progression.
    Quintero JC; Díaz NF; Rodríguez-Dorantes M; Camacho-Arroyo I
    Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37894767
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rate of castration-induced prostate stroma regression is reduced in a mouse model of benign prostatic hyperplasia.
    Zhang R; Singh S; Pan C; Xu B; Kindblom J; Eng KH; Krolewski JJ; Nastiuk KL
    Am J Clin Exp Urol; 2023; 11(1):12-26. PubMed ID: 36923722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOXO3 Depletion as a Marker of Compression-Induced Apoptosis in the Ligature Mark: An Immunohistochemical Study.
    Maiese A; Manetti AC; Santoro P; Del Duca F; De Matteis A; Turillazzi E; Frati P; Fineschi V
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The testosterone paradox of advanced prostate cancer: mechanistic insights and clinical implications.
    Kumar R; Sena LA; Denmeade SR; Kachhap S
    Nat Rev Urol; 2023 May; 20(5):265-278. PubMed ID: 36543976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signaling Pathways That Control Apoptosis in Prostate Cancer.
    Ali A; Kulik G
    Cancers (Basel); 2021 Feb; 13(5):. PubMed ID: 33668112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of acquired resistance to lapatinib may sensitise HER2-positive breast cancer cells to apoptosis induction by obatoclax and TRAIL.
    Eustace AJ; Conlon NT; McDermott MSJ; Browne BC; O'Leary P; Holmes FA; Espina V; Liotta LA; O'Shaughnessy J; Gallagher C; O'Driscoll L; Rani S; Madden SF; O'Brien NA; Ginther C; Slamon D; Walsh N; Gallagher WM; Zagozdzon R; Watson WR; O'Donovan N; Crown J
    BMC Cancer; 2018 Oct; 18(1):965. PubMed ID: 30305055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-arrestin1-medieated inhibition of FOXO3a contributes to prostate cancer cell growth in vitro and in vivo.
    Kong Z; Deng T; Zhang M; Zhao Z; Liu Y; Luo L; Cai C; Wu W; Duan X
    Cancer Sci; 2018 Jun; 109(6):1834-1842. PubMed ID: 29676828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forkhead followed by disordered tail: The intrinsically disordered regions of FOXO3a.
    Wang F; Marshall CB; Ikura M
    Intrinsically Disord Proteins; 2015; 3(1):e1056906. PubMed ID: 28232890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A spatiotemporal hypothesis for the regulation, role, and targeting of AMPK in prostate cancer.
    Khan AS; Frigo DE
    Nat Rev Urol; 2017 Mar; 14(3):164-180. PubMed ID: 28169991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutlin-3 inhibits androgen receptor-driven c-FLIP expression, resulting in apoptosis of prostate cancer cells.
    Logan IR; McClurg UL; Jones DL; O'Neill DJ; Shaheen FS; Lunec J; Gaughan L; Robson CN
    Oncotarget; 2016 Nov; 7(46):74724-74733. PubMed ID: 27729622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coordinated induction of cell survival signaling in the inflamed microenvironment of the prostate.
    McIlwain DW; Zoetemelk M; Myers JD; Edwards MT; Snider BM; Jerde TJ
    Prostate; 2016 Jun; 76(8):722-34. PubMed ID: 27088546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opportunities and challenges in combination gene cancer therapy.
    Nastiuk KL; Krolewski JJ
    Adv Drug Deliv Rev; 2016 Mar; 98():35-40. PubMed ID: 26724249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activation of AKR1C1/ERβ induces apoptosis by downregulation of c-FLIP in prostate cancer cells: A prospective therapeutic opportunity.
    Yun H; Xie J; Olumi AF; Ghosh R; Kumar AP
    Oncotarget; 2015 May; 6(13):11600-13. PubMed ID: 25816367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FOXO3a: A Potential Target in Prostate Cancer.
    Shukla S
    Austin J Urol; 2014; 1(1):. PubMed ID: 25584362
    [No Abstract]   [Full Text] [Related]  

  • 18. Nucleo-cytoplasmic transport as a therapeutic target of cancer.
    Gravina GL; Senapedis W; McCauley D; Baloglu E; Shacham S; Festuccia C
    J Hematol Oncol; 2014 Dec; 7():85. PubMed ID: 25476752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokine effects on cell viability and death of prostate carcinoma cells.
    Chondrogiannis G; Kastamoulas M; Kanavaros P; Vartholomatos G; Bai M; Baltogiannis D; Sofikitis N; Arvanitis D; Galani V
    Biomed Res Int; 2014; 2014():536049. PubMed ID: 24982891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of androgen receptor by FOXA1 and FOXO1 factors in prostate cancer.
    Zhao Y; Tindall DJ; Huang H
    Int J Biol Sci; 2014; 10(6):614-9. PubMed ID: 24948874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.