These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 18392645)
1. AMF-induced biocontrol against plant parasitic nematodes in Musa sp.: a systemic effect. Elsen A; Gervacio D; Swennen R; De Waele D Mycorrhiza; 2008 Jul; 18(5):251-256. PubMed ID: 18392645 [TBL] [Abstract][Full Text] [Related]
2. Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Koffi MC; Vos C; Draye X; Declerck S Mycorrhiza; 2013 May; 23(4):279-88. PubMed ID: 23111398 [TBL] [Abstract][Full Text] [Related]
3. AMF-induced bioprotection against migratory plant-parasitic nematodes: which mechanisms are responsible? Elsen A; Gervacio D; Vos C; Swennen R; De Waele D Commun Agric Appl Biol Sci; 2007; 72(3):667-70. PubMed ID: 18399502 [No Abstract] [Full Text] [Related]
4. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences. Jiang Y; Luan L; Hu K; Liu M; Chen Z; Geisen S; Chen X; Li H; Xu Q; Bonkowski M; Sun B Microbiome; 2020 Oct; 8(1):142. PubMed ID: 33008469 [TBL] [Abstract][Full Text] [Related]
5. Effects of endophytic Fusarium oxysporum towards Radopholus similis activity in absence of banana. Vu TT; Sikora RA; Hauschild R Commun Agric Appl Biol Sci; 2004; 69(3):381-5. PubMed ID: 15759438 [TBL] [Abstract][Full Text] [Related]
6. Tomato Root Colonization by Exogenously Inoculated Arbuscular Mycorrhizal Fungi Induces Resistance against Root-Knot Nematodes in a Dose-Dependent Manner. Molinari S; Akbarimotlagh M; Leonetti P Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012177 [TBL] [Abstract][Full Text] [Related]
7. Efficacy of Paecilomyces lilacinus (strain 251) for the control of Radopholus similis in banana. Mendoza A; Sikora RA; Kiewnick S Commun Agric Appl Biol Sci; 2004; 69(3):365-72. PubMed ID: 15759436 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. de la Peña E; Echeverría SR; van der Putten WH; Freitas H; Moens M New Phytol; 2006; 169(4):829-40. PubMed ID: 16441763 [TBL] [Abstract][Full Text] [Related]
9. Moderate drought influences the effect of arbuscular mycorrhizal fungi as biocontrol agents against Verticillium-induced wilt in pepper. Garmendia I; Goicoechea N; Aguirreolea J Mycorrhiza; 2005 Jul; 15(5):345-56. PubMed ID: 16001290 [TBL] [Abstract][Full Text] [Related]
10. Disruption of carbon for nutrient exchange between potato and arbuscular mycorrhizal fungi enhanced cyst nematode fitness and host pest tolerance. Bell CA; Magkourilou E; Urwin PE; Field KJ New Phytol; 2022 Apr; 234(1):269-279. PubMed ID: 35020195 [TBL] [Abstract][Full Text] [Related]
11. Spatial soil heterogeneity has a greater effect on symbiotic arbuscular mycorrhizal fungal communities and plant growth than genetic modification with Bacillus thuringiensis toxin genes. Cheeke TE; Schütte UM; Hemmerich CM; Cruzan MB; Rosenstiel TN; Bever JD Mol Ecol; 2015 May; 24(10):2580-93. PubMed ID: 25827202 [TBL] [Abstract][Full Text] [Related]
12. AMF-induced bioprotection against root-knot nematodes in tomato. Vos C; Tehafun A; De Waele D; Elsen A Commun Agric Appl Biol Sci; 2008; 73(1):255-8. PubMed ID: 18831286 [No Abstract] [Full Text] [Related]
13. Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Vos C; Geerinckx K; Mkandawire R; Panis B; De Waele D; Elsen A Mycorrhiza; 2012 Feb; 22(2):157-63. PubMed ID: 22147206 [TBL] [Abstract][Full Text] [Related]
14. Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L. De Deyn GB; Biere A; van der Putten WH; Wagenaar R; Klironomos JN Oecologia; 2009 Jun; 160(3):433-42. PubMed ID: 19271240 [TBL] [Abstract][Full Text] [Related]
15. Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Elsen A; Declerck S; De Waele D Appl Environ Microbiol; 2003 Jul; 69(7):4308-11. PubMed ID: 12839820 [TBL] [Abstract][Full Text] [Related]
16. Meta-analysis of interactions between arbuscular mycorrhizal fungi and biotic stressors of plants. Yang H; Dai Y; Wang X; Zhang Q; Zhu L; Bian X ScientificWorldJournal; 2014; 2014():746506. PubMed ID: 24558327 [TBL] [Abstract][Full Text] [Related]
17. Rapid temporal changes in root colonization by arbuscular mycorrhizal fungi and fine root endophytes, not dark septate endophytes, track plant activity and environment in an alpine ecosystem. Bueno de Mesquita CP; Martinez Del Río CM; Suding KN; Schmidt SK Mycorrhiza; 2018 Nov; 28(8):717-726. PubMed ID: 30141076 [TBL] [Abstract][Full Text] [Related]
18. Suitability of Pueraria phaseoloides, Chromolaena odorata and Tithonia diversifolia as in-situ mulch for nematode management in musa cropping systems. Schösser B; Hauser S; Sikora RA Commun Agric Appl Biol Sci; 2006; 71(3 Pt A):675-87. PubMed ID: 17390809 [TBL] [Abstract][Full Text] [Related]
19. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Ramírez-Viga TK; Aguilar R; Castillo-Argüero S; Chiappa-Carrara X; Guadarrama P; Ramos-Zapata J Mycorrhiza; 2018 Aug; 28(5-6):477-493. PubMed ID: 29869188 [TBL] [Abstract][Full Text] [Related]
20. Tripartite Interactions Between Endophytic Fungi, Arbuscular Mycorrhizal Fungi, and Leymus chinensis. Liu H; Wu M; Liu J; Qu Y; Gao Y; Ren A Microb Ecol; 2020 Jan; 79(1):98-109. PubMed ID: 31177395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]