BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 18392665)

  • 1. Ultrasonic monitoring of foamed polymeric tissue scaffold fabrication.
    Mather ML; Crowe JA; Morgan SP; White LJ; Kalashnikov AN; Ivchenko VG; Howdle SM; Shakesheff KM
    J Mater Sci Mater Med; 2008 Sep; 19(9):3071-80. PubMed ID: 18392665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time-lapsed imaging for in-process evaluation of supercritical fluid processing of tissue engineering scaffolds.
    Mather ML; Brion M; White LJ; Shakesheff KM; Howdle SM; Morgan SP; Crowe JA
    Biotechnol Prog; 2009; 25(4):1176-83. PubMed ID: 19572403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of pore size and structure of tissue engineering scaffolds produced by supercritical fluid processing.
    Tai H; Mather ML; Howard D; Wang W; White LJ; Crowe JA; Morgan SP; Chandra A; Williams DJ; Howdle SM; Shakesheff KM
    Eur Cell Mater; 2007 Dec; 14():64-77. PubMed ID: 18085505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Image-based characterization of foamed polymeric tissue scaffolds.
    Mather ML; Morgan SP; White LJ; Tai H; Kockenberger W; Howdle SM; Shakesheff KM; Crowe JA
    Biomed Mater; 2008 Mar; 3(1):015011. PubMed ID: 18458498
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic selection of solvents for the fabrication of 3D combined macro- and microporous polymeric scaffolds for soft tissue engineering.
    Cao Y; Croll TI; Oconnor AJ; Stevens GW; Cooper-White JJ
    J Biomater Sci Polym Ed; 2006; 17(4):369-402. PubMed ID: 16768291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Processing of Materials for Regenerative Medicine Using Supercritical Fluid Technology.
    García-González CA; Concheiro A; Alvarez-Lorenzo C
    Bioconjug Chem; 2015 Jul; 26(7):1159-71. PubMed ID: 25587916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interconnectivity analysis of supercritical CO₂-foamed scaffolds.
    Lemon G; Reinwald Y; White LJ; Howdle SM; Shakesheff KM; King JR
    Comput Methods Programs Biomed; 2012 Jun; 106(3):139-49. PubMed ID: 20837373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering.
    Kim SH; Jung Y; Kim SH
    Tissue Eng Part C Methods; 2013 Mar; 19(3):181-8. PubMed ID: 22834918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Particle seeding enhances interconnectivity in polymeric scaffolds foamed using supercritical CO(2).
    Collins NJ; Bridson RH; Leeke GA; Grover LM
    Acta Biomater; 2010 Mar; 6(3):1055-60. PubMed ID: 19671454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decellularization Methods for Scaffold Fabrication.
    Gupta SK; Mishra NC; Dhasmana A
    Methods Mol Biol; 2018; 1577():1-10. PubMed ID: 28550502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Generation and simulated imaging of pseudo-scaffolds to aid characterisation by X-ray micro CT.
    Morris DE; Mather ML; Crowe JA
    Biomaterials; 2009 Sep; 30(25):4233-46. PubMed ID: 19473700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of sintered polymer scaffolds using concomitant synchrotron computed tomography and in situ mechanical testing.
    Dhillon A; Schneider P; Kuhn G; Reinwald Y; White LJ; Levchuk A; Rose FR; Müller R; Shakesheff KM; Rahman CV
    J Mater Sci Mater Med; 2011 Dec; 22(12):2599-605. PubMed ID: 21909640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of three-dimensional porous scaffolds of complicated shape for tissue engineering. I. Compression molding based on flexible-rigid combined mold.
    Wu L; Zhang H; Zhang J; Ding J
    Tissue Eng; 2005; 11(7-8):1105-14. PubMed ID: 16144446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-modal non-invasive imaging in vitro and in vivo monitoring degradation of PLGA scaffold based gold nanoclusters.
    Wang X; Ai A; Yu Z; Deng M; Liu W; Zhou G; Li W; Zhang W; Cao Y; Wang X
    Mater Sci Eng C Mater Biol Appl; 2020 Feb; 107():110307. PubMed ID: 31761160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.
    Flaibani M; Elvassore N
    Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis of three-dimensional microstructure of poly(lactide-co-glycolide) scaffolds made by mild heating under high pressure].
    Gao CJ; Yu B; Quan DP; Lu ZJ
    Di Yi Jun Yi Da Xue Xue Bao; 2002 Sep; 22(9):776-8. PubMed ID: 12297427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the three-dimensional architecture of supercritical CO
    Salerno A; Leonardi AB; Pedram P; Di Maio E; Fanovich MA; Netti PA
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110518. PubMed ID: 32228998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaffold: a novel carrier for cell and drug delivery.
    Garg T; Singh O; Arora S; Murthy R
    Crit Rev Ther Drug Carrier Syst; 2012; 29(1):1-63. PubMed ID: 22356721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.