BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 18393294)

  • 1. Development of enteric and vagal innervation of the zebrafish (Danio rerio) gut.
    Olsson C; Holmberg A; Holmgren S
    J Comp Neurol; 2008 Jun; 508(5):756-70. PubMed ID: 18393294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sacral neural crest cells colonise aganglionic hindgut in vivo but fail to compensate for lack of enteric ganglia.
    Burns AJ; Champeval D; Le Douarin NM
    Dev Biol; 2000 Mar; 219(1):30-43. PubMed ID: 10677253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae.
    Holmberg A; Schwerte T; Pelster B; Holmgren S
    J Exp Biol; 2004 Nov; 207(Pt 23):4085-94. PubMed ID: 15498954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colonization of the bowel by neural crest-derived cells re-migrating from foregut backtransplanted to vagal or sacral regions of host embryos.
    Rothman TP; Le Douarin NM; Fontaine-Pérus JC; Gershon MD
    Dev Dyn; 1993 Mar; 196(3):217-33. PubMed ID: 8400406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neurotrophin receptors and enteric neuronal development during metamorphosis in the amphibian Xenopus laevis.
    Sundqvist M; Holmgren S
    Cell Tissue Res; 2004 Apr; 316(1):45-54. PubMed ID: 14986100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells.
    Uyttebroek L; Shepherd IT; Hubens G; Timmermans JP; Van Nassauw L
    Cell Tissue Res; 2013 Nov; 354(2):355-70. PubMed ID: 23881406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TTX-sensitive and TTX-insensitive control of spontaneous gut motility in the developing zebrafish (Danio rerio) larvae.
    Holmberg A; Olsson C; Hennig GW
    J Exp Biol; 2007 Mar; 210(Pt 6):1084-91. PubMed ID: 17337720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of neuromuscular junctions in the mouse esophagus: morphology suggests a role for enteric coinnervation during maturation of vagal myoneural contacts.
    Breuer C; Neuhuber WL; Wörl J
    J Comp Neurol; 2004 Jul; 475(1):47-69. PubMed ID: 15176084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomical and neurochemical features of the extrinsic and intrinsic innervation of the striated muscle in the porcine esophagus: evidence for regional and species differences.
    Wu M; Majewski M; Wojtkiewicz J; Vanderwinden JM; Adriaensen D; Timmermans JP
    Cell Tissue Res; 2003 Mar; 311(3):289-97. PubMed ID: 12658437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enteric neural crest-derived cells and neural stem cells: biology and therapeutic potential.
    Burns AJ; Pasricha PJ; Young HM
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():3-7. PubMed ID: 15065996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of neuromuscular junctions in the mouse esophagus: focus on establishment and reduction of enteric co-innervation.
    Wörl J; Dütsch F; Neuhuber WL
    Anat Embryol (Berl); 2002 May; 205(2):141-52. PubMed ID: 12021916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nervous system development in normal and atresic chick embryo intestine: an immunohistochemical study.
    Parisi Salvi E; Vaccaro R; Baglaj SM; Renda T
    Anat Embryol (Berl); 2004 Dec; 209(2):143-51. PubMed ID: 15597193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of endogenous and exogenous nitric oxide on gut motility in zebrafish Danio rerio embryos and larvae.
    Holmberg A; Olsson C; Holmgren S
    J Exp Biol; 2006 Jul; 209(Pt 13):2472-9. PubMed ID: 16788030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pelvic plexus contributes ganglion cells to the hindgut enteric nervous system.
    Nagy N; Brewer KC; Mwizerwa O; Goldstein AM
    Dev Dyn; 2007 Jan; 236(1):73-83. PubMed ID: 16937371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of the swimbladder and its innervation in the zebrafish, Danio rerio.
    Robertson GN; McGee CA; Dumbarton TC; Croll RP; Smith FM
    J Morphol; 2007 Nov; 268(11):967-85. PubMed ID: 17702001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intestinal growth and differentiation in zebrafish.
    Wallace KN; Akhter S; Smith EM; Lorent K; Pack M
    Mech Dev; 2005 Feb; 122(2):157-73. PubMed ID: 15652704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calbindin immunoreactivity in the enteric nervous system of larval and adult zebrafish (Danio rerio).
    Olsson C
    Cell Tissue Res; 2011 Apr; 344(1):31-40. PubMed ID: 21327820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic screen for mutations affecting development and function of the enteric nervous system.
    Kuhlman J; Eisen JS
    Dev Dyn; 2007 Jan; 236(1):118-27. PubMed ID: 17131406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in ontogeny of the enteric nervous system.
    Burns AJ; Thapar N
    Neurogastroenterol Motil; 2006 Oct; 18(10):876-87. PubMed ID: 16961690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation.
    Barlow AJ; Wallace AS; Thapar N; Burns AJ
    Development; 2008 May; 135(9):1681-91. PubMed ID: 18385256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.