BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

354 related articles for article (PubMed ID: 18393422)

  • 1. Quantum dot FRET biosensors that respond to pH, to proteolytic or nucleolytic cleavage, to DNA synthesis, or to a multiplexing combination.
    Suzuki M; Husimi Y; Komatsu H; Suzuki K; Douglas KT
    J Am Chem Soc; 2008 Apr; 130(17):5720-5. PubMed ID: 18393422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Luminescent quantum dots fluorescence resonance energy transfer-based probes for enzymatic activity and enzyme inhibitors.
    Shi L; Rosenzweig N; Rosenzweig Z
    Anal Chem; 2007 Jan; 79(1):208-14. PubMed ID: 17194141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum dot FRET-based probes in thin films grown in microfluidic channels.
    Crivat G; Da Silva SM; Reyes DR; Locascio LE; Gaitan M; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2010 Feb; 132(5):1460-1. PubMed ID: 20073459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Förster resonance energy transfer investigations using quantum-dot fluorophores.
    Clapp AR; Medintz IL; Mattoussi H
    Chemphyschem; 2006 Jan; 7(1):47-57. PubMed ID: 16370019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-immobilized self-assembled protein-based quantum dot nanoassemblies.
    Sapsford KE; Medintz IL; Golden JP; Deschamps JR; Uyeda HT; Mattoussi H
    Langmuir; 2004 Aug; 20(18):7720-8. PubMed ID: 15323524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing mixed films of immobilized oligonucleotides and quantum dots for the multiplexed detection of nucleic acid hybridization using a combination of fluorescence resonance energy transfer and direct excitation of fluorescence.
    Algar WR; Krull UJ
    Langmuir; 2010 Apr; 26(8):6041-7. PubMed ID: 20000340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beyond labels: a review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction.
    Algar WR; Tavares AJ; Krull UJ
    Anal Chim Acta; 2010 Jul; 673(1):1-25. PubMed ID: 20630173
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and application of quantum dots FRET-based protease sensors.
    Shi L; De Paoli V; Rosenzweig N; Rosenzweig Z
    J Am Chem Soc; 2006 Aug; 128(32):10378-9. PubMed ID: 16895398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-based fluorescence resonance energy transfer with improved FRET efficiency in capillary flows.
    Zhang CY; Johnson LW
    Anal Chem; 2006 Aug; 78(15):5532-7. PubMed ID: 16878892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single quantum dot-based nanosensor for multiple DNA detection.
    Zhang CY; Hu J
    Anal Chem; 2010 Mar; 82(5):1921-7. PubMed ID: 20121246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward a multiplexed solid-phase nucleic acid hybridization assay using quantum dots as donors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2009 May; 81(10):4113-20. PubMed ID: 19358559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dot-based resonance energy transfer and its growing application in biology.
    Medintz IL; Mattoussi H
    Phys Chem Chem Phys; 2009 Jan; 11(1):17-45. PubMed ID: 19081907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules.
    Dong H; Gao W; Yan F; Ji H; Ju H
    Anal Chem; 2010 Jul; 82(13):5511-7. PubMed ID: 20524633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-assembled donor comprising quantum dots and fluorescent proteins for long-range fluorescence resonance energy transfer.
    Lu H; Schöps O; Woggon U; Niemeyer CM
    J Am Chem Soc; 2008 Apr; 130(14):4815-27. PubMed ID: 18338889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Can luminescent quantum dots be efficient energy acceptors with organic dye donors?
    Clapp AR; Medintz IL; Fisher BR; Anderson GP; Mattoussi H
    J Am Chem Soc; 2005 Feb; 127(4):1242-50. PubMed ID: 15669863
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.
    Algar WR; Krull UJ
    Anal Chem; 2010 Jan; 82(1):400-5. PubMed ID: 19938821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble and single particle photophysical properties (two-photon excitation, anisotropy, FRET, lifetime, spectral conversion) of commercial quantum dots in solution and in live cells.
    Grecco HE; Lidke KA; Heintzmann R; Lidke DS; Spagnuolo C; Martinez OE; Jares-Erijman EA; Jovin TM
    Microsc Res Tech; 2004 Nov; 65(4-5):169-79. PubMed ID: 15630694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.