These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 18393423)

  • 1. Toward three-dimensional nanoengineering of heterogeneous catalysts.
    Arslan I; Walmsley JC; Rytter E; Bergene E; Midgley PA
    J Am Chem Soc; 2008 Apr; 130(17):5716-9. PubMed ID: 18393423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The renaissance of iron-based Fischer-Tropsch synthesis: on the multifaceted catalyst deactivation behaviour.
    de Smit E; Weckhuysen BM
    Chem Soc Rev; 2008 Dec; 37(12):2758-81. PubMed ID: 19020686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer-Tropsch catalysts from surface science to industrial application.
    Oosterbeek H
    Phys Chem Chem Phys; 2007 Jul; 9(27):3570-6. PubMed ID: 17612722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-resolution in situ transmission electron microscopy of a promoter of a heterogeneous catalyst.
    Hansen TW; Wagner JB; Hansen PL; Dahl S; Topsøe H; Jacobsen CJ
    Science; 2001 Nov; 294(5546):1508-10. PubMed ID: 11711670
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy.
    de Smit E; Swart I; Creemer JF; Hoveling GH; Gilles MK; Tyliszczak T; Kooyman PJ; Zandbergen HW; Morin C; Weckhuysen BM; de Groot FM
    Nature; 2008 Nov; 456(7219):222-5. PubMed ID: 19005551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black.
    Gontard LC; Dunin-Borkowski RE; Ozkaya D
    J Microsc; 2008 Nov; 232(2):248-59. PubMed ID: 19017224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards better 3-D reconstructions by combining electron tomography and atom-probe tomography.
    Arslan I; Marquis EA; Homer M; Hekmaty MA; Bartelt NC
    Ultramicroscopy; 2008 Nov; 108(12):1579-85. PubMed ID: 18620812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale chemical imaging of the reduction behavior of a single catalyst particle.
    de Smit E; Swart I; Creemer JF; Karunakaran C; Bertwistle D; Zandbergen HW; de Groot FM; Weckhuysen BM
    Angew Chem Int Ed Engl; 2009; 48(20):3632-6. PubMed ID: 19206136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new experimental cell for in situ and operandoX-ray absorption measurements in heterogeneous catalysis.
    Girardon JS; Khodakov AY; Capron M; Cristol S; Dujardin C; Dhainaut F; Nikitenko S; Meneau F; Bras W; Payen E
    J Synchrotron Radiat; 2005 Sep; 12(Pt 5):680-4. PubMed ID: 16120995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels.
    Khodakov AY; Chu W; Fongarland P
    Chem Rev; 2007 May; 107(5):1692-744. PubMed ID: 17488058
    [No Abstract]   [Full Text] [Related]  

  • 11. Quantitative structural assessment of heterogeneous catalysts by electron tomography.
    Grothausmann R; Zehl G; Manke I; Fiechter S; Bogdanoff P; Dorbandt I; Kupsch A; Lange A; Hentschel MP; Schumacher G; Banhart J
    J Am Chem Soc; 2011 Nov; 133(45):18161-71. PubMed ID: 21916435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis.
    Karaca H; Hong J; Fongarland P; Roussel P; Griboval-Constant A; Lacroix M; Hortmann K; Safonova OV; Khodakov AY
    Chem Commun (Camb); 2010 Feb; 46(5):788-90. PubMed ID: 20087521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent developments in the application of nanomaterials to understanding molecular level processes in cobalt catalysed Fischer-Tropsch synthesis.
    Beaumont SK
    Phys Chem Chem Phys; 2014 Mar; 16(11):5034-43. PubMed ID: 24487570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing correlation of valence state with nanoporous structure in cobalt catalyst nanoparticles by in situ environmental TEM.
    Xin HL; Pach EA; Diaz RE; Stach EA; Salmeron M; Zheng H
    ACS Nano; 2012 May; 6(5):4241-7. PubMed ID: 22494286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally benign production of biodiesel using heterogeneous catalysts.
    Hara M
    ChemSusChem; 2009; 2(2):129-35. PubMed ID: 19180600
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale scanning transmission electron tomography.
    Midgley PA; Weyland M; Yates TJ; Arslan I; Dunin-Borkowski RE; Thomas JM
    J Microsc; 2006 Sep; 223(Pt 3):185-90. PubMed ID: 17059526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ observation of self-assembled hydrocarbon Fischer-Tropsch products on a cobalt catalyst.
    Navarro V; van Spronsen MA; Frenken JW
    Nat Chem; 2016 Oct; 8(10):929-34. PubMed ID: 27657868
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies.
    Chen J; Liu ZP
    J Am Chem Soc; 2008 Jun; 130(25):7929-37. PubMed ID: 18507384
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functionalized Natural Carbon-Supported Nanoparticles as Excellent Catalysts for Hydrocarbon Production.
    Sun J; Guo L; Ma Q; Gao X; Yamane N; Xu H; Tsubaki N
    Chem Asian J; 2017 Feb; 12(3):366-371. PubMed ID: 27918648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruthenium nanoparticles supported on carbon nanotubes as efficient catalysts for selective conversion of synthesis gas to diesel fuel.
    Kang J; Zhang S; Zhang Q; Wang Y
    Angew Chem Int Ed Engl; 2009; 48(14):2565-8. PubMed ID: 19248073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.