These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 18393892)

  • 1. A cellular perspective to bioceramic scaffolds for bone tissue engineering: the state of the art.
    Guda T; Appleford M; Oh S; Ong JL
    Curr Top Med Chem; 2008; 8(4):290-9. PubMed ID: 18393892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Advances in research on calcium polyphosphate bioceramic for bone tissue engineering scaffold].
    Qiu K; Chen X; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2005 Jun; 22(3):614-7. PubMed ID: 16013272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced bioceramic composite for bone tissue engineering: design principles and structure-bioactivity relationship.
    El-Ghannam AR
    J Biomed Mater Res A; 2004 Jun; 69(3):490-501. PubMed ID: 15127396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique.
    Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD
    J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and manufacture of combinatorial calcium phosphate bone scaffolds.
    Hoelzle DJ; Svientek SR; Alleyne AG; Wagoner Johnson AJ
    J Biomech Eng; 2011 Oct; 133(10):101001. PubMed ID: 22070326
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.
    Ma H; Feng C; Chang J; Wu C
    Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical characterization of injection-molded macro porous bioceramic bone scaffolds.
    Vivanco J; Aiyangar A; Araneda A; Ploeg HL
    J Mech Behav Biomed Mater; 2012 May; 9():137-52. PubMed ID: 22498292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a bioactive porous collagen/β-tricalcium phosphate bone graft assisting rapid vascularization for bone tissue engineering applications.
    Baheiraei N; Nourani MR; Mortazavi SMJ; Movahedin M; Eyni H; Bagheri F; Norahan MH
    J Biomed Mater Res A; 2018 Jan; 106(1):73-85. PubMed ID: 28879686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compositional dependence of hematopoietic stem cells expansion on bioceramic composite scaffolds for bone tissue engineering.
    Mishra S; Rajyalakshmi A; Balasubramanian K
    J Biomed Mater Res A; 2012 Sep; 100(9):2483-91. PubMed ID: 22615189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of porosity and pore architecture in the in vivo bone regeneration capacity of biodegradable glass scaffolds.
    Sanzana ES; Navarro M; Ginebra MP; Planell JA; Ojeda AC; Montecinos HA
    J Biomed Mater Res A; 2014 Jun; 102(6):1767-73. PubMed ID: 23813739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering.
    Denry I; Kuhn LT
    Dent Mater; 2016 Jan; 32(1):43-53. PubMed ID: 26423007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration.
    Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoindentation on porous bioceramic scaffolds for bone tissue engineering.
    Chowdhury S; Thomas V; Dean D; Catledge SA; Vohra YK
    J Nanosci Nanotechnol; 2005 Nov; 5(11):1816-20. PubMed ID: 16433415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of processing parameters on the degradation of calcium polyphosphate bioceramic for bone tissue scaffolds].
    Qin Y; Yu X; Chen Y; Ding Y; Wan C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):794-7. PubMed ID: 17899747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.
    Torres AL; Gaspar VM; Serra IR; Diogo GS; Fradique R; Silva AP; Correia IJ
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4460-9. PubMed ID: 23910366
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-mediated degradation of strontium-doped calcium polyphosphate scaffold for bone tissue engineering.
    Gu Z; Wang H; Li L; Wang Q; Yu X
    Biomed Mater; 2012 Dec; 7(6):065007. PubMed ID: 23186786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects.
    Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E
    Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The bone-mimicking effect of calcium phosphate on composite chitosan scaffolds in maxillofacial bone tissue engineering.
    Sangkert S; Kamolmatyakul S; Meesane J
    J Appl Biomater Funct Mater; 2020; 18():2280800019893204. PubMed ID: 32297820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of a thermoplastic polymeric carrier for bone tissue engineering using allogeneic mesenchymal stem cells in granular scaffolds.
    Mylonas D; Vidal MD; De Kok IJ; Moriarity JD; Cooper LF
    J Prosthodont; 2007; 16(6):421-30. PubMed ID: 17683475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Manufacture of β-TCP/alginate scaffolds through a Fab@home model for application in bone tissue engineering.
    Diogo GS; Gaspar VM; Serra IR; Fradique R; Correia IJ
    Biofabrication; 2014 Jun; 6(2):025001. PubMed ID: 24657988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.