BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18394330)

  • 1. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions.
    Song G; Chitrphiromsri P; Ding D
    Int J Occup Saf Ergon; 2008; 14(1):89-106. PubMed ID: 18394330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of firefighters' protective clothing after heat exposure.
    Rossi RM; Bolli W; Stämpfli R
    Int J Occup Saf Ergon; 2008; 14(1):55-60. PubMed ID: 18394326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An empirical analysis of thermal protective performance of fabrics used in protective clothing.
    Mandal S; Song G
    Ann Occup Hyg; 2014 Oct; 58(8):1065-77. PubMed ID: 25135076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of moisture content within multilayer protective clothing on protection from radiation and steam.
    Su Y; Li J; Song G
    Int J Occup Saf Ergon; 2018 Jun; 24(2):190-199. PubMed ID: 28427297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative assessment of the relationship between radiant heat exposure and protective performance of multilayer thermal protective clothing during dry and wet conditions.
    Fu M; Weng WG; Yuan HY
    J Hazard Mater; 2014 Jul; 276():383-92. PubMed ID: 24922096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Moisture effects in heat transfer through clothing systems for wildland firefighters.
    Lawson LK; Crown EM; Ackerman MY; Dale JD
    Int J Occup Saf Ergon; 2004; 10(3):227-38. PubMed ID: 15377407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laboratory evaluation of thermal protective clothing performance upon hot liquid splash.
    Gholamreza F; Song G
    Ann Occup Hyg; 2013 Jul; 57(6):805-22. PubMed ID: 23801030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the thermal hazardous effect of protective clothing caused by stored energy discharge.
    He J; Lu Y; Chen Y; Li J
    J Hazard Mater; 2017 Sep; 338():76-84. PubMed ID: 28531661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Performance study of protective clothing against hot water splashes: from bench scale test to instrumented manikin test.
    Lu Y; Song G; Wang F
    Ann Occup Hyg; 2015 Mar; 59(2):232-42. PubMed ID: 25349371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysing performance of protective clothing upon hot liquid exposure using instrumented spray manikin.
    Lu Y; Song G; Li J
    Ann Occup Hyg; 2013 Jul; 57(6):793-804. PubMed ID: 23328808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of aluminized fabrics on radiant protective performance of fire proximity suit materials.
    Jin L; Park PK; Hong KA; Yoon KJ
    Ann Occup Hyg; 2015 Mar; 59(2):243-52. PubMed ID: 25324564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative analysis of moisture distribution and transfer in firefighter protective clothing exposed to low-intensity radiation with/without hot steam.
    Su Y; Tian M; Zhang X; Li J; Han X
    Int J Occup Saf Ergon; 2022 Sep; 28(3):1533-1542. PubMed ID: 33754949
    [No Abstract]   [Full Text] [Related]  

  • 13. Thermal strain in fire fighters while wearing task-fitted versus en 469:2005 protective clothing during a prolonged rescue drill.
    Ilmarinen R; Mäkinen H; Lindholm H; Punakallio A; Kervinen H
    Int J Occup Saf Ergon; 2008; 14(1):7-18. PubMed ID: 18394322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of clothing thermal insulation and moisture vapour resistance of the clothed body walking in wind.
    Qian X; Fan J
    Ann Occup Hyg; 2006 Nov; 50(8):833-42. PubMed ID: 16857703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of the dual performance of thermal protective clothing with deformation under low radiant heat exposure.
    Zhu X; He J; Rui K; Zhou Q
    Int J Occup Saf Ergon; 2023 Sep; 29(3):1037-1046. PubMed ID: 35976071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A quasi-physical model for predicting the thermal insulation and moisture vapour resistance of clothing.
    Qian X; Fan J
    Appl Ergon; 2009 Jul; 40(4):577-90. PubMed ID: 18835476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of steam formation and migration in firefighters' protective clothing using X-ray radiography.
    Keiser C; Wyss P; Rossi RM
    Int J Occup Saf Ergon; 2010; 16(2):217-29. PubMed ID: 20540841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction methods of skin burn for performance evaluation of thermal protective clothing.
    Zhai LN; Li J
    Burns; 2015 Nov; 41(7):1385-96. PubMed ID: 25816966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal parameters measurement on fire fighter during intense fire exposition.
    Oliveira A; Gehin C; Delhomme G; Dittmar A; McAdams E
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4128-31. PubMed ID: 19963808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hot steam transfer through heat protective clothing layers.
    Rossi R; Indelicato E; Bolli W
    Int J Occup Saf Ergon; 2004; 10(3):239-45. PubMed ID: 15377408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.