These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 18394330)

  • 21. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments?
    Wang F; Kuklane K; Gao C; Holmér I
    Physiol Meas; 2011 Feb; 32(2):239-49. PubMed ID: 21178244
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fire-Resistant Hydrogel-Fabric Laminates: A Simple Concept That May Save Lives.
    Illeperuma WR; Rothemund P; Suo Z; Vlassak JJ
    ACS Appl Mater Interfaces; 2016 Jan; 8(3):2071-7. PubMed ID: 26716351
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel approach for fit analysis of thermal protective clothing using three-dimensional body scanning.
    Lu Y; Song G; Li J
    Appl Ergon; 2014 Nov; 45(6):1439-46. PubMed ID: 24793820
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Occupational needs and evaluation methods for cold protective clothing.
    Anttonen H
    Arctic Med Res; 1993; 52 Suppl 9():1-76. PubMed ID: 8048995
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing the performance of phase-change materials in personal protective clothing systems.
    Reinertsen RE; Faerevik H; Holbø K; Nesbakken R; Reitan J; Røyset A; Suong Le Thi M
    Int J Occup Saf Ergon; 2008; 14(1):43-53. PubMed ID: 18394325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analytical study of the heat loss attenuation by clothing on thermal manikins under radiative heat loads.
    Den Hartog EA; Havenith G
    Int J Occup Saf Ergon; 2010; 16(2):245-61. PubMed ID: 20540843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessment of dermal hazard from acid burns with fire retardant garments in a full-size simulation of an engulfment flash fire.
    Mackay CE; Vivanco SN; Yeboah G; Vercellone J
    Burns; 2016 Sep; 42(6):1350-6. PubMed ID: 27325216
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of a numerical model to predict physiological strain of firefighter in fire hazard.
    Su Y; Yang J; Song G; Li R; Xiang C; Li J
    Sci Rep; 2018 Feb; 8(1):3628. PubMed ID: 29483557
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A test battery related to ergonomics of protective clothing.
    Havenith G; Heus R
    Appl Ergon; 2004 Jan; 35(1):3-20. PubMed ID: 14985136
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The influence of sweating on the heat transmission properties of cold protective clothing studied with a sweating thermal manikin.
    Meinander H; Hellsten M
    Int J Occup Saf Ergon; 2004; 10(3):263-9. PubMed ID: 15377411
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat gain from thermal radiation through protective clothing with different insulation, reflectivity and vapour permeability.
    Bröde P; Kuklane K; Candas V; Den Hartog EA; Griefahn B; Holmér I; Meinander H; Nocker W; Richards M; Havenith G
    Int J Occup Saf Ergon; 2010; 16(2):231-44. PubMed ID: 20540842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of added fullness and ventilation holes in T-shirt design on thermal comfort.
    Ho C; Fan J; Newton E; Au R
    Ergonomics; 2011 Apr; 54(4):403-10. PubMed ID: 21491282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Theoretical analysis of three methods for calculating thermal insulation of clothing from thermal manikin.
    Huang J
    Ann Occup Hyg; 2012 Jul; 56(6):728-35. PubMed ID: 22798547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Thermal radiation protection by lateral heat dissipation. II. Full-scale laboratory study.
    Piergallini JR; Stoll AM
    Aerosp Med; 1974 Apr; 45(4):403-6. PubMed ID: 4821735
    [No Abstract]   [Full Text] [Related]  

  • 35. Maximum allowable exposure to different heat radiation levels in three types of heat protective clothing.
    Heus R; Denhartog EA
    Ind Health; 2017 Dec; 55(6):529-536. PubMed ID: 28978903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using Artificial Neural Network Modeling to Analyze the Thermal Protective and Thermo-Physiological Comfort Performance of Textile Fabrics Used in Oilfield Workers' Clothing.
    Mandal S; Mazumder NU; Agnew RJ; Grover IB; Song G; Li R
    Int J Environ Res Public Health; 2021 Jun; 18(13):. PubMed ID: 34208824
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Field tests on human tolerance to (LNG) fire radiant heat exposure, and attenuation effects of clothing and other objects.
    Raj PK
    J Hazard Mater; 2008 Sep; 157(2-3):247-59. PubMed ID: 18291577
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermal performance assessment of heat resistant fabrics based on a new thermal wave model of skin heat transfer.
    Zhu F; Zhang W; Song G
    Int J Occup Saf Ergon; 2006; 12(1):43-51. PubMed ID: 16553999
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling Skin Injury from Hot Spills on Clothing.
    Log T
    Int J Environ Res Public Health; 2017 Nov; 14(11):. PubMed ID: 29137118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of clothing layers in combination with fire fighting personal protective clothing on physiological and perceptual responses to intermittent work and on materials performance test results.
    Smith DL; Haller JM; Hultquist EM; Lefferts WK; Fehling PC
    J Occup Environ Hyg; 2013; 10(5):259-69. PubMed ID: 23472953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.