These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 18394517)

  • 1. Does the brain make waves to improve stability?
    McIntyre J; Slotine JJ
    Brain Res Bull; 2008 Apr; 75(6):717-22. PubMed ID: 18394517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Teleoperation for a ball-catching task with significant dynamics.
    Smith C; Bratt M; Christensen HI
    Neural Netw; 2008 May; 21(4):604-20. PubMed ID: 18490137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous shared control for stabilizing reaching and grasping with brain-machine interfaces.
    Kim HK; Biggs SJ; Schloerb DW; Carmena JM; Lebedev MA; Nicolelis MA; Srinivasan MA
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1164-73. PubMed ID: 16761843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robotics and neuroscience: a rhythmic interaction.
    Ronsse R; Lefèvre P; Sepulchre R
    Neural Netw; 2008 May; 21(4):577-83. PubMed ID: 18490135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inverse biomimetics: how robots can help to verify concepts concerning sensorimotor control of human arm and leg movements.
    Kalveram KT; Seyfarth A
    J Physiol Paris; 2009; 103(3-5):232-43. PubMed ID: 19665562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback control of the limbs position during voluntary rhythmic oscillation.
    Esposti R; Cavallari P; Baldissera F
    Biol Cybern; 2007 Aug; 97(2):123-36. PubMed ID: 17534650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview of adaptive model theory: solving the problems of redundancy, resources, and nonlinear interactions in human movement control.
    Neilson PD; Neilson MD
    J Neural Eng; 2005 Sep; 2(3):S279-312. PubMed ID: 16135890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Achieving "organic compositionality" through self-organization: reviews on brain-inspired robotics experiments.
    Tani J; Nishimoto R; Paine RW
    Neural Netw; 2008 May; 21(4):584-603. PubMed ID: 18495423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitivity derivatives for flexible sensorimotor learning.
    Abdelghani MN; Lillicrap TP; Tweed DB
    Neural Comput; 2008 Aug; 20(8):2085-111. PubMed ID: 18336076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Widespread access to predictive models in the motor system: a short review.
    Davidson PR; Wolpert DM
    J Neural Eng; 2005 Sep; 2(3):S313-9. PubMed ID: 16135891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensory feedback in a half-center oscillator model.
    Simoni MF; DeWeerth SP
    IEEE Trans Biomed Eng; 2007 Feb; 54(2):193-204. PubMed ID: 17278576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain-computer interface: changes in performance using virtual reality techniques.
    Ron-Angevin R; Díaz-Estrella A
    Neurosci Lett; 2009 Jan; 449(2):123-7. PubMed ID: 19000739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel theoretical framework for the dynamic stability analysis, movement control, and trajectory generation in a multisegment biomechanical model.
    Iqbal K; Roy A
    J Biomech Eng; 2009 Jan; 131(1):011002. PubMed ID: 19045918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired sensorization of a biomechatronic robot hand for the grasp-and-lift task.
    Edin BB; Ascari L; Beccai L; Roccella S; Cabibihan JJ; Carrozza MC
    Brain Res Bull; 2008 Apr; 75(6):785-95. PubMed ID: 18394525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multimodal sensory integration in insects--towards insect brain control architectures.
    Wessnitzer J; Webb B
    Bioinspir Biomim; 2006 Sep; 1(3):63-75. PubMed ID: 17671308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The contribution of active body movement to visual development in evolutionary robots.
    Suzuki M; Floreano D; Di Paolo EA
    Neural Netw; 2005; 18(5-6):656-65. PubMed ID: 16112555
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance limitations from delay in human and mechanical motor control.
    Beamish D; Bhatti S; Wu J; Jing Z
    Biol Cybern; 2008 Jul; 99(1):43-61. PubMed ID: 18481080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Laboratory evaluation of a unified theory for simultaneous multiple axis artificial arm control.
    Jerard RB; Jacobsen SC
    J Biomech Eng; 1980 Aug; 102(3):199. PubMed ID: 19530801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.