These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 18394527)

  • 1. Visual feedback distortion in a robotic environment for hand rehabilitation.
    Brewer BR; Klatzky R; Matsuoka Y
    Brain Res Bull; 2008 Apr; 75(6):804-13. PubMed ID: 18394527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perceptual limits for a robotic rehabilitation environment using visual feedback distortion.
    Brewer BR; Fagan M; Klatzky RL; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2005 Mar; 13(1):1-11. PubMed ID: 15813400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced gait-related improvements after therapist- versus robotic-assisted locomotor training in subjects with chronic stroke: a randomized controlled study.
    Hornby TG; Campbell DD; Kahn JH; Demott T; Moore JL; Roth HR
    Stroke; 2008 Jun; 39(6):1786-92. PubMed ID: 18467648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial.
    Barker RN; Brauer SG; Carson RG
    Stroke; 2008 Jun; 39(6):1800-7. PubMed ID: 18403742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inter-hemispheric coupling changes associate with motor improvements after robotic stroke rehabilitation.
    Pellegrino G; Tomasevic L; Tombini M; Assenza G; Bravi M; Sterzi S; Giacobbe V; Zollo L; Guglielmelli E; Cavallo G; Vernieri F; Tecchio F
    Restor Neurol Neurosci; 2012; 30(6):497-510. PubMed ID: 22868224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke.
    Mirelman A; Bonato P; Deutsch JE
    Stroke; 2009 Jan; 40(1):169-74. PubMed ID: 18988916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assisted movement with enhanced sensation (AMES): coupling motor and sensory to remediate motor deficits in chronic stroke patients.
    Cordo P; Lutsep H; Cordo L; Wright WG; Cacciatore T; Skoss R
    Neurorehabil Neural Repair; 2009 Jan; 23(1):67-77. PubMed ID: 18645190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploratory study on the effects of a robotic hand rehabilitation device on changes in grip strength and brain activity after stroke.
    Pinter D; Pegritz S; Pargfrieder C; Reiter G; Wurm W; Gattringer T; Linderl-Madrutter R; Neuper C; Fazekas F; Grieshofer P; Enzinger C
    Top Stroke Rehabil; 2013; 20(4):308-16. PubMed ID: 23893830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robot-assisted rehabilitation of hand function.
    Balasubramanian S; Klein J; Burdet E
    Curr Opin Neurol; 2010 Dec; 23(6):661-70. PubMed ID: 20852421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robot-assisted exercise for hand weakness after stroke: a pilot study.
    Stein J; Bishop L; Gillen G; Helbok R
    Am J Phys Med Rehabil; 2011 Nov; 90(11):887-94. PubMed ID: 21952215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Robotic-assisted rehabilitation of the upper limb after acute stroke.
    Masiero S; Celia A; Rosati G; Armani M
    Arch Phys Med Rehabil; 2007 Feb; 88(2):142-9. PubMed ID: 17270510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compensating Hand Function in Chronic Stroke Patients Through the Robotic Sixth Finger.
    Salvietti G; Hussain I; Cioncoloni D; Taddei S; Rossi S; Prattichizzo D
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):142-150. PubMed ID: 26890911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Invited commentary.
    Merians AS
    Phys Ther; 2010 Apr; 90(4):504-6; author reply 506. PubMed ID: 20360055
    [No Abstract]   [Full Text] [Related]  

  • 14. The influence of hand dominance on the response to a constraint-induced therapy program following stroke.
    Langan J; van Donkelaar P
    Neurorehabil Neural Repair; 2008; 22(3):298-304. PubMed ID: 17916658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental results using force-feedback cueing in robot-assisted stroke therapy.
    Johnson MJ; Van der Loos HF; Burgar CG; Shor P; Leifer LJ
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):335-48. PubMed ID: 16200757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of goal change to optimize upper-extremity motor performance in a robotic environment.
    Brewer BR; Klatzky R; Markham H; Matsuoka Y
    Dev Med Child Neurol; 2009 Oct; 51 Suppl 4():146-53. PubMed ID: 19740223
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of grasp versus reach in people with hemiparesis poststroke.
    Lang CE; Wagner JM; Edwards DF; Sahrmann SA; Dromerick AW
    Neurorehabil Neural Repair; 2006 Dec; 20(4):444-54. PubMed ID: 17082499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment.
    Sanchez RJ; Liu J; Rao S; Shah P; Smith R; Rahman T; Cramer SC; Bobrow JE; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):378-89. PubMed ID: 17009498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis.
    Lum PS; Burgar CG; Shor PC
    IEEE Trans Neural Syst Rehabil Eng; 2004 Jun; 12(2):186-94. PubMed ID: 15218933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial.
    Kutner NG; Zhang R; Butler AJ; Wolf SL; Alberts JL
    Phys Ther; 2010 Apr; 90(4):493-504. PubMed ID: 20185616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.