BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 18394638)

  • 1. Use of specific surface areas in inverse gas chromatography studies at zero surface coverage.
    Almazán-Almazán MC; Pérez-Mendoza M; Fernández-Morales I; Domingo-García M; López-Garzón FJ
    J Chromatogr A; 2008 May; 1190(1-2):271-7. PubMed ID: 18394638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the dispersive component of the surface energy of active carbons as determined by inverse gas chromatography at zero surface coverage.
    Pérez-Mendoza M; Almazán-Almazán MC; Méndez-Liñán L; Domingo-García M; López-Garzón FJ
    J Chromatogr A; 2008 Dec; 1214(1-2):121-7. PubMed ID: 18995860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An inverse gas chromatography study of the adsorption of organics on nickel- and copper-hexacyanoferrates at zero surface coverage.
    Onjia AE; Milonjić SK; Todorović M; Loos-Neskovic C; Fedoroff M; Jones DJ
    J Colloid Interface Sci; 2002 Jul; 251(1):10-7. PubMed ID: 16290696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the acid/base properties of MgY and NH4Y molecular sieves by inverse gas chromatography.
    Bilgiç C; Tümsek F
    J Chromatogr A; 2007 Aug; 1162(1):83-9. PubMed ID: 17451721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved chromatographic analysis and mechanisms in adsorption and catalysis.
    Roubani-Kalantzopoulou F
    J Chromatogr A; 2009 Mar; 1216(10):1567-606. PubMed ID: 19150072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time distribution of adsorption entropy of gases on heterogeneous surfaces by reversed-flow gas chromatography.
    Katsanos NA; Kapolos J; Gavril D; Bakaoukas N; Loukopoulos V; Koliadima A; Karaiskakis G
    J Chromatogr A; 2006 Sep; 1127(1-2):221-7. PubMed ID: 16806242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface characterization of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.
    Zou QC; Zhang SL; Tang QQ; Wang SM; Wu LM
    J Chromatogr A; 2006 Mar; 1110(1-2):140-5. PubMed ID: 16460744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical insight of physical adsorption for a single component adsorbent+adsorbate system: II. The Henry region.
    Chakraborty A; Saha BB; Ng KC; Koyama S; Srinivasan K
    Langmuir; 2009 Jul; 25(13):7359-67. PubMed ID: 19469548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Heats of H(2)S Adsorption on Activated Carbons: Effect of Surface Features.
    Bagreev A; Adib F; Bandosz TJ
    J Colloid Interface Sci; 1999 Nov; 219(2):327-332. PubMed ID: 10534391
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface properties of zinc oxide nanoparticles studied by inverse gas chromatography.
    Przybyszewska M; Krzywania A; Zaborski M; Szynkowska MI
    J Chromatogr A; 2009 Jul; 1216(27):5284-91. PubMed ID: 19464015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of ceria-zirconia mixed oxides as catalysts for the combustion of volatile organic compounds using inverse gas chromatography.
    Díaz E; de Rivas B; López-Fonseca R; Ordóñez S; Gutiérrez-Ortiz JI
    J Chromatogr A; 2006 May; 1116(1-2):230-9. PubMed ID: 16581082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase hydration state in the gas phase: sorption isotherm measurements and inverse gas chromatography.
    Marton Z; Chaput L; Pierre G; Graber M
    Biotechnol J; 2010 Nov; 5(11):1216-25. PubMed ID: 21058322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative study on the gas-phase adsorption of hexane over zeolites by calorimetry and inverse gas chromatography.
    Díaz E; Ordóñez S; Auroux A
    J Chromatogr A; 2005 Nov; 1095(1-2):131-7. PubMed ID: 16275293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thermodynamic analysis of gas adsorption on microporous materials: evaluation of energy heterogeneity.
    Llorens J; Pera-Titus M
    J Colloid Interface Sci; 2009 Mar; 331(2):302-11. PubMed ID: 19100988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calculation of the BET Compatible Surface Area from Any Type I Isotherms Measured below the Critical Temperature.
    Tóth J; Berger F; Dékány I
    J Colloid Interface Sci; 1999 Apr; 212(2):402-410. PubMed ID: 10092370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques.
    Singh GS; Lal D; Tripathi VS
    J Chromatogr A; 2004 May; 1036(2):189-95. PubMed ID: 15146921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adsorption of volatile organic compounds onto carbon nanotubes, carbon nanofibers, and high-surface-area graphites.
    Díaz E; Ordóñez S; Vega A
    J Colloid Interface Sci; 2007 Jan; 305(1):7-16. PubMed ID: 17046777
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the microporosity and surface chemistry of polymeric resins on adsorptive properties toward phenol.
    Wu Y; Li Z; Xi H
    J Hazard Mater; 2004 Sep; 113(1-3):131-5. PubMed ID: 15363522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the effect of a non-ionic surfactant on the surface of sucrose crystals and on the crystal growth process by inverse gas chromatography.
    Kumar KV; Rocha F
    J Chromatogr A; 2009 Nov; 1216(48):8528-34. PubMed ID: 19853258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of specific surface area of pyrogenic silicas on their heat of immersion in water and on their surface properties assessed using inverse gas chromatography.
    Donnet JB; Balard H; Nedjari N; Hamdi B; Barthel H; Gottschalk-Gaudig T
    J Colloid Interface Sci; 2008 Dec; 328(1):15-9. PubMed ID: 18829045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.