These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 18394774)

  • 1. Factors determining detergent resistance of erythrocyte membranes.
    Rodi PM; Trucco VM; Gennaro AM
    Biophys Chem; 2008 Jun; 135(1-3):14-8. PubMed ID: 18394774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detergent solubilization of bovine erythrocytes. Comparison between the insoluble material and the intact membrane.
    Rodi PM; Cabeza MS; Gennaro AM
    Biophys Chem; 2006 Jul; 122(2):114-22. PubMed ID: 16580771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring detergent insolubility in bovine hippocampal membranes: a critical assessment of the requirement for cholesterol.
    Pucadyil TJ; Chattopadhyay A
    Biochim Biophys Acta; 2004 Feb; 1661(1):9-17. PubMed ID: 14967470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of GPI-anchored enzyme in liposome detergent-resistance.
    Morandat S; Bortolato M; Roux B
    J Membr Biol; 2003 Feb; 191(3):215-21. PubMed ID: 12571756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol and sphingolipid enhance the Triton X-100 insolubility of glycosylphosphatidylinositol-anchored proteins by promoting the formation of detergent-insoluble ordered membrane domains.
    Schroeder RJ; Ahmed SN; Zhu Y; London E; Brown DA
    J Biol Chem; 1998 Jan; 273(2):1150-7. PubMed ID: 9422781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of Triton X-100 with sphingomyelin and phosphatidylcholine monolayers: influence of the cholesterol content.
    Abi-Rizk G; Besson F
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):163-7. PubMed ID: 18644701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative study of the interaction of CHAPS and Triton X-100 with the erythrocyte membrane.
    Rodi PM; Bocco Gianello MD; Corregido MC; Gennaro AM
    Biochim Biophys Acta; 2014 Mar; 1838(3):859-66. PubMed ID: 24239862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative lipid analysis and structure of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Koumanov KS; Tessier C; Momchilova AB; Rainteau D; Wolf C; Quinn PJ
    Arch Biochem Biophys; 2005 Feb; 434(1):150-8. PubMed ID: 15629118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detergent effects on membranes at subsolubilizing concentrations: transmembrane lipid motion, bilayer permeabilization, and vesicle lysis/reassembly are independent phenomena.
    Ahyayauch H; Bennouna M; Alonso A; Goñi FM
    Langmuir; 2010 May; 26(10):7307-13. PubMed ID: 20170131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insolubility of lipids in triton X-100: physical origin and relationship to sphingolipid/cholesterol membrane domains (rafts).
    London E; Brown DA
    Biochim Biophys Acta; 2000 Nov; 1508(1-2):182-95. PubMed ID: 11090825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detergent resistant domains in erythrocyte membranes survive after cell cholesterol depletion: an EPR spin label study.
    Rivas MG; Gennaro AM
    Chem Phys Lipids; 2003 Jan; 122(1-2):165-9. PubMed ID: 12598048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantitative model describing the selective solubilization of membrane domains.
    Keller S; Tsamaloukas A; Heerklotz H
    J Am Chem Soc; 2005 Aug; 127(32):11469-76. PubMed ID: 16089477
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane resistance to Triton X-100 explored by real-time atomic force microscopy.
    Morandat S; El Kirat K
    Langmuir; 2006 Jun; 22(13):5786-91. PubMed ID: 16768509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of increasing concentrations of nonionic detergent Triton X-100 on solubilization and structure of rat liver and adipose plasma membranes.
    Yegutkin GG
    Membr Cell Biol; 1997; 10(5):515-20. PubMed ID: 9225255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane organization of the human serotonin(1A) receptor monitored by detergent insolubility using GFP fluorescence.
    Kalipatnapu S; Chattopadhyay A
    Mol Membr Biol; 2005; 22(6):539-47. PubMed ID: 16373325
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The detergent solubility properties of a malarial (Plasmodium knowlesi) variant antigen expressed on the surface of infected erythrocytes.
    Howard RJ; Barnwell JW
    J Cell Biochem; 1984; 24(3):297-306. PubMed ID: 6736140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cholesterol depletion and temperature on the isolation of detergent-resistant membranes from human erythrocytes.
    Domingues CC; Ciana A; Buttafava A; Casadei BR; Balduini C; de Paula E; Minetti G
    J Membr Biol; 2010 Apr; 234(3):195-205. PubMed ID: 20339840
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-melting lipid mixtures and the origin of detergent-resistant membranes studied with temperature-solubilization diagrams.
    Sot J; Manni MM; Viguera AR; Castañeda V; Cano A; Alonso C; Gil D; Valle M; Alonso A; Goñi FM
    Biophys J; 2014 Dec; 107(12):2828-2837. PubMed ID: 25517149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The isolation and structure of membrane lipid rafts from rat brain.
    Chen X; Morris R; Lawrence MJ; Quinn PJ
    Biochimie; 2007 Feb; 89(2):192-6. PubMed ID: 16935406
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cholesterol depletion modulates detergent resistant fraction of human serotonin(1A) receptors.
    Sahu SK; Saxena R; Chattopadhyay A
    Mol Membr Biol; 2012 Nov; 29(7):290-8. PubMed ID: 22594670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.