These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 18394899)

  • 21. p21-activated kinase 1 phosphorylates and regulates 14-3-3 binding to GEF-H1, a microtubule-localized Rho exchange factor.
    Zenke FT; Krendel M; DerMardirossian C; King CC; Bohl BP; Bokoch GM
    J Biol Chem; 2004 Apr; 279(18):18392-400. PubMed ID: 14970201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cellular signaling for activation of Rho GTPase Cdc42.
    Sinha S; Yang W
    Cell Signal; 2008 Nov; 20(11):1927-34. PubMed ID: 18558478
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extracellular signal-regulated kinase and GEF-H1 mediate depolarization-induced Rho activation and paracellular permeability increase.
    Waheed F; Speight P; Kawai G; Dan Q; Kapus A; Szászi K
    Am J Physiol Cell Physiol; 2010 Jun; 298(6):C1376-87. PubMed ID: 20237148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rho activation at a glance.
    Buchsbaum RJ
    J Cell Sci; 2007 Apr; 120(Pt 7):1149-52. PubMed ID: 17376960
    [No Abstract]   [Full Text] [Related]  

  • 25. Paxillin mediates stretch-induced Rho signaling and endothelial permeability via assembly of paxillin-p42/44MAPK-GEF-H1 complex.
    Gawlak G; Tian Y; O'Donnell JJ; Tian X; Birukova AA; Birukov KG
    FASEB J; 2014 Jul; 28(7):3249-60. PubMed ID: 24706358
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of vascular permeability by atrial natriuretic peptide via a GEF-H1-dependent mechanism.
    Tian X; Tian Y; Gawlak G; Sarich N; Wu T; Birukova AA
    J Biol Chem; 2014 Feb; 289(8):5168-83. PubMed ID: 24352660
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GEF without a Dbl domain?
    Braga VM
    Nat Cell Biol; 2002 Aug; 4(8):E188-90. PubMed ID: 12149627
    [No Abstract]   [Full Text] [Related]  

  • 28. RhoGDIs revisited: novel roles in Rho regulation.
    Dransart E; Olofsson B; Cherfils J
    Traffic; 2005 Nov; 6(11):957-66. PubMed ID: 16190977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway.
    Bouquier N; Vignal E; Charrasse S; Weill M; Schmidt S; Léonetti JP; Blangy A; Fort P
    Chem Biol; 2009 Jun; 16(6):657-66. PubMed ID: 19549603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heparanase-induced GEF-H1 signaling regulates the cytoskeletal dynamics of brain metastatic breast cancer cells.
    Ridgway LD; Wetzel MD; Ngo JA; Erdreich-Epstein A; Marchetti D
    Mol Cancer Res; 2012 Jun; 10(6):689-702. PubMed ID: 22513363
    [TBL] [Abstract][Full Text] [Related]  

  • 31. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA.
    Chang YC; Nalbant P; Birkenfeld J; Chang ZF; Bokoch GM
    Mol Biol Cell; 2008 May; 19(5):2147-53. PubMed ID: 18287519
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of the nucleotide exchange factor ITSN1L: evidence for a kinetic discrimination of GEF-stimulated nucleotide release from Cdc42.
    Kintscher C; Groemping Y
    J Mol Biol; 2009 Mar; 387(2):270-83. PubMed ID: 19356586
    [TBL] [Abstract][Full Text] [Related]  

  • 33. GEF-H1 Signaling upon Microtubule Destabilization Is Required for Dendritic Cell Activation and Specific Anti-tumor Responses.
    Kashyap AS; Fernandez-Rodriguez L; Zhao Y; Monaco G; Trefny MP; Yoshida N; Martin K; Sharma A; Olieric N; Shah P; Stanczak M; Kirchhammer N; Park SM; Wieckowski S; Laubli H; Zagani R; Kasenda B; Steinmetz MO; Reinecker HC; Zippelius A
    Cell Rep; 2019 Sep; 28(13):3367-3380.e8. PubMed ID: 31553907
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BNIP-2 retards breast cancer cell migration by coupling microtubule-mediated GEF-H1 and RhoA activation.
    Pan M; Chew TW; Wong DCP; Xiao J; Ong HT; Chin JFL; Low BC
    Sci Adv; 2020 Jul; 6(31):eaaz1534. PubMed ID: 32789168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microtubules regulate GEF-H1 in response to extracellular matrix stiffness.
    Heck JN; Ponik SM; Garcia-Mendoza MG; Pehlke CA; Inman DR; Eliceiri KW; Keely PJ
    Mol Biol Cell; 2012 Jul; 23(13):2583-92. PubMed ID: 22593214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?
    Fukuhara S; Chikumi H; Gutkind JS
    Oncogene; 2001 Mar; 20(13):1661-8. PubMed ID: 11313914
    [No Abstract]   [Full Text] [Related]  

  • 37. Catching a GEF by its tail.
    García-Mata R; Burridge K
    Trends Cell Biol; 2007 Jan; 17(1):36-43. PubMed ID: 17126549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. GEF-H1 mediates tumor necrosis factor-alpha-induced Rho activation and myosin phosphorylation: role in the regulation of tubular paracellular permeability.
    Kakiashvili E; Speight P; Waheed F; Seth R; Lodyga M; Tanimura S; Kohno M; Rotstein OD; Kapus A; Szászi K
    J Biol Chem; 2009 Apr; 284(17):11454-66. PubMed ID: 19261619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Y-box factor ZONAB/DbpA associates with GEF-H1/Lfc and mediates Rho-stimulated transcription.
    Nie M; Aijaz S; Leefa Chong San IV; Balda MS; Matter K
    EMBO Rep; 2009 Oct; 10(10):1125-31. PubMed ID: 19730435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The microtubule-associated Rho activating factor GEF-H1 interacts with exocyst complex to regulate vesicle traffic.
    Pathak R; Delorme-Walker VD; Howell MC; Anselmo AN; White MA; Bokoch GM; Dermardirossian C
    Dev Cell; 2012 Aug; 23(2):397-411. PubMed ID: 22898781
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.